Блок питания. Блок питания 5 вольт из 12 для авто

Как самому собрать простой блок питания и мощный источник напряжения.
Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.


Каждый, кто захочет сможет изготовить 12 - ти вольтовый блок самостоятельно, без особых затруднений.
Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник...
Шаг 1: Какие детали необходимы для сборки блока питания...
Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок....
-Монтажная плата.
-Четыре диода 1N4001, или подобные. Мост диодный.
-Стабилизатор напряжения LM7812.
-Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В - 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
-Электролитический конденсатор емкостью 1000мкФ - 4700мкФ.
-Конденсатор емкостью 1uF.
-Два конденсатора емкостью 100nF.
-Обрезки монтажного провода.
-Радиатор, при необходимости.
Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.
Шаг 2: Инструменты....
Для изготовления блока необходимы инструменты для монтажа:
-Паяльник или паяльная станция
-Кусачки
-Монтажный пинцет
-Кусачки для зачистки проводов
-Устройство для отсоса припоя.
-Отвертка.
И другие инструменты, которые могут оказаться полезными.
Шаг 3: Схема и другие...


Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.
Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.
Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.

Схема блока питания 12в 30А .
При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.
Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.
В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
Для охлаждения радиатора можно применить небольшой вентилятор.
Проверка блока питания
При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку - типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.

Блок питания 3 - 24в

Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт, при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.
Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5.1 K.
Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.

Схема блока питания на 1,5 в

Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.

Схема регулируемого блока питания от 1,5 до 12,5 в

Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.

Схема блока питания с фиксированным выходным напряжением

Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.

Схема блока питания мощностью 20 Ватт с защитой

Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.
По какой схеме: импульсный источник питания или линейный?
Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения...
Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.
Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.

Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).
Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.

Самодельный блок питания на 3.3v

Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.

Трансформаторный блок питания на КТ808

У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.

При условии правильного монтажа, просадка выходного напряжения не превышает 0.1 вольта

Блок питания на 1000в, 2000в, 3000в

Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы - отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.

В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А) и понижающий накальный трансформатор Т2 - ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.

Еще по теме

Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.

Ремонт и доработка китайского блока питания для питания адаптера.

Такой преобразователь может понадобиться для питания сильноточных 5-вольтовых схем от автомобильного аккумулятора, зарядки от него же литиевых аккумуляторов (тогда выходное напряжение придется уменьшить до 4 В); в авторском же варианте используется для питания внешнего компьютерного DVD-RW (USB) от автомобильного аккумулятора. Этот привод и сам по себе довольно сильно греется в процессе работы, поэтому охлаждать еще и микросхему линейного стабилизатора просто нечем. А импульсники знамениты своей экономичностью.

На микросхеме DDI собраны умножитель напряжения и тактирующий генератор (рис. 1.10).



Умножитель необходим из-за того, что в схеме используются более дешевые и распространенные полевые транзисторы с каналом n-типа. Для полного отпирания полевого транзистора с изолированным затвором и индуцируемым каналом (к этому типу относятся все транзисторы серии IRF) напряжение на его затворе нужно поднять на 3…5 В выше напряжения на стоке – так что здесь без умножителя не обойтись.

Умножитель собран на элементах СЗ, VD1, VD2 и фильтрующем конденсаторе С4 по типовой схеме. Для ограничения напряжения (оно может подняться до 22 В, а для микросхемы 555 напряжение выше 18 В опасно) добавлен резистор R5. Благодаря ему напряжение на конденсаторе С4 составляет около 17…18 В, этого достаточно для нормальной работы полевого транзистора и недостаточно для пробоя микросхемы. Конденсатор СЗ может быть или многослойным керамическим (в виде параллелепипеда, для поверхностного монтажа), или пленочным, но не дисковым керамическим! Иначе, из-за значительного внутреннего сопротивления конденсатора, напряжение на С4 не повысится выше 15… 16 В даже без резистора R5, и ключевой транзистор будет сильно греться. Конденсатор С4 может быть рассчитан на 16 В.

Собственно широтно-импульсный модулятор собран на таймере DD2. Через конденсатор С2 и транзистор VT1 на вход S таймера поступают очень короткие синхроимпульсы с выхода генератора – чем они короче, тем лучше (иначе выход таймера может возбуждаться). Емкости 10 пФ вполне достаточно, ее можно даже уменьшить до 5 пФ.

Регулировка длительности выходных импульсов производится через вход REF (вывод 5 микросхемы). Длительность выходного импульса равняется времени, за которое конденсатор С5 заряжается от нуля до напряжения на этом входе, то есть при уменьшении напряжения REF длительность импульсов (и напряжение на выходе) уменьшается, при напряжении менее 1,5 В она становится равной нулю.

Принцип работы устройства

Преобразователь напряжения построен по классической схеме m полевом транзисторе VT2 и дросселе L1. В качестве обратноходово- го диода используется транзистор VT3. В мощных понижающю импульсниках в этом месте лучше всего ставить именно транзисто ры – так как ток обратного хода практически равен прямому току, и если падение напряжения на ключевом транзисторе (VT2 по схеме) легко уменьшить до минимума, то с диодами все гораздо сложнее. В итоге получается парадокс: ключевой транзистор – холодный, дроссель почти не греется, зато диод – как утюг! А ведь чем меньше нагрев – тем выше КПД схемы, и с отводом тепла меньше проблем.

Транзистор VT3 работает в противофазе с ключевым транзистором VT2 благодаря инвертору на микросхеме DD3. Так как обрат- ноходовой диод должен быть открыт не все время простоя ключевого транзистора, а только небольшое (иначе он будет замыкать через дроссель выход схемы) время сразу после закрытия ключевого транзистора (именно в это время импульс тока обратного хода имеет наибольшую амплитуду), в схему добавлен конденсатор С6 и – для точной настройки – подстроечный резистор R8. Все остальное время транзистор VT3 работает как диод – благодаря встроенному мощному защитному диоду между выводами стока и истока. То есть от замены диода транзистором хуже точно не будет.

Стабилизатор напряжения собран на стабилитроне VD3 и транзисторе VT4. Точность и величина выходного напряжения зависят только от качества и напряжения стабилизации стабилитрона. Его можно заменить микросхемой TL431.

Дроссель L1 можно намотать на каркасе трансформатора от старой радиоточки. Берем провод диаметром 1 мм (для тока нагрузки до 2 А) и мотаем до заполнения каркаса (около сотни витков). Так как дроссель работает на постоянном токе, то между пластинами обязателен диэлектрический зазор – то есть засовываем все Ш-об- разные пластины в одном направлении и между ними и «палочками» прокладываем 1-2 слоя газетной бумаги (или трансформаторной, если у вас есть), после чего все это дело очень хорошо сжимаем. Можно намотать дроссель и на ферритовом кольце диаметром примерно 30…40 мм, но опять-таки его лучше разрезать и снова склеить, или взять специальный разрезной сердечник (ферритовые чашки – диаметром 20…30 мм и высотой 15…20 мм, примерно 50…80 витков).

Налаживание

Полностью собираем схему, не впаиваем только транзисторы VT2 и VT3. Подключаем питание – напряжение на выводах питания DD2 должно быть на 4…6 В больше напряжения питания; если оно меньше – убеждаемся в наличии генерации (напряжение на выходе генератора должно равняться половине питающего), уменьшаем сопротивление резистора R5, если это не помогает – ставим более качественный конденсатор СЗ. Если напряжение питания DD2 больше 18 В – увеличиваем сопротивление резистора R5. После этого впаиваем оба транзистора и уменьшаем сопротивление R8 до нуля. К выходу подключаем мощную нагрузку (рекомендуется – автомобильную лампочку на 12 В, 20 Вт) и подаем питание +12 В через подключенный амперметр. Если все работает нормально, напряжение на лампочке будет примерно равно напряжению стабилизации стабилитрона, а потребляемый схемой ток будет раза в два меньше тока через лампочку (в авторском варианте – 0,5 А). Теперь отключаем лампочку-нагрузку. Напряжение на выходе должно увеличиться не более чем на 0,2…0,3 В, а напряжение на входе REF DD2 должно быть в пределах 0,8…2,5 В относительно общего провода. Если оно близко к нулю, следует уменьшить емкость конденсатора С5 раза в два.

Включите-отключите нагрузку: дроссель при этом должен коротко «стукать» (это цепь обратной связи отрабатывает резкое изменение тока нагрузки), никаких свистов (самовозбуждения) быть не должно. Если возникает возбуждение – скорее всего, неправильно нарисованы дорожки.

После этого можно начинать настройку «умного диода» (VT3). Медленно вращайте движок подстроечного резистора R8 – потребляемый схемой ток (+12 В) начнет уменьшаться – примерно на 5…10%. Этот ток раньше расходовался исключительно на нагрев корпуса транзистора VT3. Но в какое-то время может возникнуть самовозбуждение выходного каскада – потребляемый схемой ток резко возрастает в 2…3 раза. Движок R8 нужно установить в такое положение, при котором потребляемый ток уменьшился, но до возбуждения еще далеко. Снова отключите-включите нагрузку, отклю- чите-включите питание: возбуждения выхода и свиста в дросселе (даже очень короткого!) быть не должно. Если это не так – нужно чуть уменьшить сопротивление R8 и повторить провокацию.

Благодаря такой схеме в^слючения транзистора VT3 он хоть и греется, но заметно слабее, чем хороший диод Шоттки (КД213, 1N5822). При токе нагрузки до 1…1,5 А радиаторы для обоих транзисторов не нужны, при токе до 3 А к корпусу VT3 нужно прикрутить небольшую пластин- ку-теплоотвод (КРЕН с такой силой греется уже при токе 0,2 А).

КТ315 можно заменить любыми кремниевыми структуры п-р-п. Электролиты С7 и С8 желательно набрать из нескольких соединенных параллельно меньшей емкости, параллельно им можно включить парочку пленочных или многослойных керамических конденсаторов емкостью 0,1 мкФ и более.

При повторении схемы особое внимание нужно уделить проводам питания – все элементы и все провода должны быть подключены именно так, как показано на рисунке! Не экономьте на спичках – иначе замучитесь с настройкой! Дорожки, нарисованные на рисунке более толстой линией, должны быть потолще – минимум 1,5…2 мм.

Сразу после первого вояжа на машине с семьёй на море возникла идея сделать в автомобиле стационарную разводу розеток под USB для зарядки мобильных устройств. Кстати сейчас новые автомобили стали уже комплектовать с инверторами на 220В и соответственно розетками на 5В.

Я таких машин ещё не встречал.
Да, в продаже если и есть адаптеры на для мобильных ПК то они предназначены для зарядки одного, максимум двух устройств при условии, что второе устройство не такое уж мощное. У меня в машине и так постоянно подключены 3 адаптера, но спрятаны они под колодкой предохранителей.

А пассажиры пользуются адаптером, который втыкается в разъём в пепельнице, что мне не очень удобно, так как его постоянно задеваю при переключении передач. После дня пути обычно у пассажиров разрежаются все устройства и начинается возня с зарядками мобильников. Приходится даже свой навигатор отключать, чтобы зарядить чьё-нибудь устройство.

Можно было сделать, как делают многие, покупают колодку на несколько адаптеров и сопли проводов тянутся по всему салону. И так требуется устройство выдающие положенные 5 вольт и мощностью 10 А. Много? Прикинем: 4 телефона, потребляют около 1 А каждый, планшет порядка 2 А, навигатор больше 0,5 А видеорегистратор тоже 0,5 А и радар-детектор около 0,5 А. И того 7, 5 А.

В процессе было собрано 3 преобразователя, но не один не мог выдерживать и 3 А продолжительное время. Один так вообще загорелся.

Нормально заработала только эта схема.

Схема преобразователя DC/DC на MC34063

Плата устройства

Сборочный чертёж

Да, моя плата далека от идеала, умение разводить плату сравнимо с талантом. Полевик с диодом расположил так, чтобы можно было прицепить практически любой радиатор, сделав плату чуть длиннее, а крепёж уже по месту. Специально подгонять плату под корпус не стал в виду отсутствия такового. Все детали нашлись в первом раскуроченном блоке питания компьютера.

Для изготовления устройства понадобилось:

1. Конденсатор керамический С1 470 пФ (1шт)
2. Конденсатор электролитический С3,С5,С6 1000 мкФ, 16В (3шт)
3. Конденсатор электролитический С2 100 мкФ, 16В (1шт)
4. Конденсатор электролитический С4 470 мкФ, 25В лучше 50В(1шт)
5. Индуктивности DR1, DR2 типа гантелька (2шт)
6. Трансформатор импульсный DR3 кольцевой (1шт)
7. Индуктивность типа пенёк DR4 (1шт)
8. Винтовой клемник J1 (1шт)
9. Резистор R1 1,2 кОм (1шт)
10. Резистор R2 3,6 кОм (1шт)
11. Резистор R3 5,6 кОм (1шт)
12. Резистор R4 2,2 кОм (1шт)
13. Резистор R5 2,2 кОм или 1 кОм на 1ват (1шт)
14. Микроконтроллер U1 MC34063
15. Диод VD1, VD3 FR155 (2шт)
16. Диод VD2 SBL25L25CT (1шт)
17. Транзистор биполярный VT1 2SC1846 (1шт)
18. Полевой транзистор IRL3302 (1шт)
19. Панелька DIP8 (1шт)
20. Корпус по произвольным размерам

Основные компоненты: это сама микросхема U1, импульсный трансформатор DR3, мощный N канальный полевик VT2(может быть любым используемый в цепях питания) и диодная сборка VD2. Трансформатор VD3 изготовил из такого же трансформатора с того самого БП. Кольцо из пресспермалоя, желтого цвета. 27мм. Первичную обмотку набил проводом 2мм 22 витка, вторичную обмотку намотал проводом тоньше, 0,55 мм 44 витка.

Индуктивности DR1 DR2 типа гантелька взял как есть из БП. Индуктивность типа пенёк DR4 тоже самое. Транзистор и диод разместил на радиаторе от того же БП.

Всё собрал на печатной плате собственной разработки. В ходе лабораторных испытаний пришлось внести изменения в предложенную автором схему. Дело в том что сам автор указывает на то что резистор R5 греется, даже замена на более мощный резистор проблему не решает. В течении часа резистор этот у меня почернел и обуглился.

Решил попробовать увеличить сопротивление до 2,2кОм и всё греться он перестал. Транзистор VT1, перестраховался, заменил на более мощный. Трансформатор DR3 тоже сначала не много грелся, перемотал, добавил количество витков в первичную и во вторичную обмотки, стало 30 и 60.

Не знаю, что там с фронтами открытия полевого транзистора но схема работает нормально, при нагрузке в 2А устройство остаётся холодным. Радиаторы на транзистор и диод можно большие не ставить. Поставил на выходе +5В ферритовое кольцо, для уменьшения помех.

Вот мой первый, рабочий, испытательный прототип.

Испытание на сопротивление 1Ом сопротивление быстро нагрелось сила тока на фото.

И последние, кипятильник на 5В в работе. Смотрите силу тока на фото. Да вот тут уже начали греться транзистор с диодом.

Испытывал свой преобразователь на 5 А работал почти весь день так немного тёплый. Потом нашёл старый блок питания от монитора которого уже нет. Плату пустил в разбор, в корпус уместил свою схему. Транзистор и диод расположил на кулере от старого ноутбука. В противоположной стороне коробки просверлил ряд отверстий. Очень даже получилось ничего. Воздух будет прокачиваться через всю схему.

Готовое устройство на установку в автомобиль.

Розетки двойные под USB планирую врезать в одну в переднюю панель вместо кнопки-зглушки и вторую к задним пассажирам в подлокотник передних сидений. Также думаю одинарную розетку в панель передней левой стойки и подвести питание к видеорегистратору который находится у зеркала. По данной схеме можно собрать вообще универсальный блок питания, то есть добавить каскад преобразования из 12В в 19В для питания ноутбука, что планирую в будущем.

В настоящее время, импульсные преобразователи используются практически везде и очень часто заменяют классические , на которых, как правило, при больших токах происходят значительные потери в виде тепла.

Приведенная здесь схема является простым импульсным понижающим преобразователем (Step-Down) с 12В до 5В . Схема построена на основе популярной и недорогой микросхеме .

Устройство предназначено для работы с автомобильной бортовой сетью 12В и может использоваться для зарядки/питания GPS навигаторов или мобильных телефонов, оснащенных разъемом USB.

В режиме ожидания схема полностью отключается от источника питания, а во время нормальной работы отключается сразу же после отключения нагрузки. Запуск преобразователя осуществляется путем кратковременного нажатия на кнопку и если к выходу не была ранее подключена нагрузка, например телефон, то преобразователь автоматически выключится.

Описание работы преобразователя напряжения с 12 на 5 вольт

Как уже было сказано ранее, схема построена на микросхеме MC34063, которая представляет собой контроллер, содержащий основные компоненты, необходимые для изготовления DC-DC преобразователей.

MC34063 содержит температурную компенсацию, источник опорного напряжения, компаратор и генератор с регулируемым заполнением. Кроме того, данная микросхема содержит схему ограничения тока и внутренний ключ, который может работать с токами до 1,5 А.

Для изготовления преобразователя требуется ОУ, дроссель, диод и несколько резисторов и конденсаторов. На рисунке ниже представлена полная принципиальная схема преобразователя.

Сердцем устройства является уже упомянутый ранее чип DD2 (MC34063), а так же дроссель L1 и диод Шоттки VD1. Диод выполняет очень важную роль — благодаря ему происходит закрытие контура для протекания тока от дросселя L1, возникающего после отключения внутреннего выходного ключа MC34063.

Конденсатор C3 определяет частоту работы внутреннего генератора DD2 и при емкости в 470pf частота будет составлять около 50 кГц. Резистор R5 отвечает за ограничение тока преобразователя и через него протекает весь импульсный ток, поступающий далее на дроссель L1. Ограничение тока установлено на уровне около 1,1 А.

Конденсатор C1 фильтрует напряжение питания. Выходной фильтр представляет собой конденсатор C4, а стабилитрон VD3 мощностью 1,3 Вт защищает схему от возможного кратковременного повышения напряжения.

Очень важным элементом является R3, R7, так как он отвечает за величину выходного напряжения. Их соотношение подобрано таким образом, что при выходном напряжении 5В на входе 5 компаратора микросхемы DD2 было напряжение 1,25В.

Большим преимуществом данной схемы является возможность автоматического выключения питания после отключения нагрузки. За эту функцию отвечает транзистор VT1 и резисторы R1,R2. В выключенном состоянии резистор R1 обеспечивает правильную отсечку транзистора VT1. Запуск системы осуществляется через кратковременное нажатие кнопки SW1.

Преобразователь запускается, а транзистор VT2 далее поддерживает низкий уровень на базе VT1. Резистор R2 ограничивает ток базы транзистора VТ1.

Для контроля тока, потребляемого нагрузкой, используется операционный усилитель DD1 (). Он работает в качестве неинвертирующего усилителя с коэффициентом усиления равным 1000. Коэффициент усиления определяется номиналами резисторов R8 и R9.

Конденсатор C2 фильтрует напряжение питания усилителя. Для управления транзистором VT2 используется делитель напряжения на резисторах R4 и R6, с коэффициентом деления 2.

Незначительное падение напряжения на измерительном резисторе (шунте) R11 порядка 5-6мВ приведет к открытию транзистора VT2 и поддержанию работы преобразователя. Таким образом, для поддержания работы преобразователя достаточно чтобы ток потребления был порядка 25-30мА. Светодиод VD2 выполняет роль индикатора питания, а его ток ограничен резистором R10.

(80,4 Kb, скачано: 1 155)

Вверх