Надежные как рельсовая сталь. Рельсовая сталь. Производится также контроль макроструктуры горячекатаных рельсов с оценкой качества по специально разработанным шкалам макроструктур

Назначение:

- направлять колеса ПС в движении;

Воспринимать упруго перерабатывать и передавать нагрузки от колес на подрельсовое основание;

На участках с а/б служить проводником сигнального тока, а при электротяге – обратного силового.

Классификация:

Рельсы подразделяются:

А) по типам Р50, Р65, Р65к, Р75 (тип рельса определяется массой одного метра рельса, округленное значение кt подставляется после буквы Р).

Р65к – прокатываются для укладки в наружные нити кривых с R≤550 м.

Б) по категории качества: В-высшего; Т1 и Т2 – термоупрочненные; Н- нетермоупрочненные; (Категория зависит от частоты рельсовой стали, ее твердости, структуры, прямолинейности рельсов при изготовлении и т.д.) ,СС – для совмещенного скоростного движения; НЭ – низкотемпературной надежности; ИЭ – рельсы повышенной износостойкости.

В) по наличию болтовых отверстий: с отверстиями на обоих концах (2-3) или без отверстий.

Г) по способу выплавки стали: М - из мартеновской стали, К - из конвертерной стали; Э - из электростали.

Д) по виду исходных заготовок: из слитков; из непрерывно-литых заготовок (НЛЗ).

Требования:

- Прочность: иметь достаточный момент инерции (I см 4) и момент сопротивления (W см 3), чтобы возникающие в рельсах напряжения изгиба и кручения не превышали допустимых величин.

-Долговечность: Рельсовая сталь должна обладать высокой твердостью, износостойкостью, и вязкостью.

- Высокая контакто-усталостная выносливость.

Масса рельса, его очертание (профиль) качество рельсовой стали и особенности изготовления находятся между собой в тесной связи и зависимости от нагрузок колесных пар на рельс, скоростей движения и грузонапряженности.

Рельсовая сталь: Химический состав приведен в таблице. В марках стали буквы М,К,Э – способы выплавки стали, цыфры- среднюю массовую долю углерода в сотых долях%. Буквы Ф,С,Х,Т – лигированые стали ванадий, кремний, хром, титан соответственно.

Химический состав рельсовой стали:

Марка стали Массовая доля элементов%
C Mn Si V Ti Cr P S АL
K78XCФ Э78XCФ 0,70 0,82 0,75 1,05 0,40 0,80 0,05 0,15 - 0,40 0,60 0,025 0,025 0,005
М76Ф К76Ф Э76Ф 0,25 0,45 0,03 0,15 0,035 0,030 0,025 0,040 0,035 0,030 0,020
М76Т К76Т Э76Т - 0,007 0,025
М76 К76 Э76 - 0,025

98% железа; Углерод – увеличивает прочность рельса при изгибе; марганец – твердость, вязкость, износостойкость; Кремний – твердость, износостойкость; Фосфор – хладноломкость; сера – красноломкость.

Лопата является неотъемлемой частью домашнего быта. Сфера использования данного инструмента широка. И поскольку инструмент используется часто, к нему выдвигаются определенные требования.

Она должна быть крепкой, прочной, удобной в использовании, обладать высоким сопротивлением коррозии и долговечностью. Неплохо зарекомендовали по этим пунктам на рынке лопаты из рельсовой стали.

1 Технология создания

Основным материалом для таких лопат выбрана рельсовая сталь, насыщенная углеродом. Материал отличается высокой прочностью при небольшом весе, что является оптимальным вариантом для рабочего инструмента. Часто в таких целях используются старые рельсы, или рельсы, не отвечающие необходимым кондициям. Полученный металл фасуют, после чего он проходит обработку.

1.1 Процесс производства (видео)


1.2 Преимущества лопаты из рельсовой стали

Из преимуществ лопат из рельсовой стали следует отметить такие:

    Высокая прочность и сбалансированная упругость. Эти качества обеспечивает прочный материал и особый способ закалки. Причем упругость металлической основы позволяет лопате немного изгибаться под нагрузкой, а после возвращаться в первоначальное положение. Значит, деформация такому инструменту не грозит.

    Небольшой вес. Не смотря на прочность и плотность материала, высокое содержание углерода делает лопату легче, чем инструмент из кованой стали. Это увеличивает комфорт при работе.

    Стойкость к износу и коррозии. Стойкость к коррозийным процессам обеспечивается не только спецификой материала, но и антикороззийными покрытиями, которыми покрывается большая часть лопат из рельсовой стали.

    Невысокие ценовые показатели. Лопаты из рельсовой стали на рынке по ценовым показателям немногим дороже лопат из кованой стали и нержавейки.

    Самозаточка в процессе эксплуатации. Лопаты из рельсовой стали, благодаря структуре, не теряют остроту даже при работе с твердыми типами грунта, корнями, подмерзшей землей. А корректировка заточки проводится во время работы.

2 Выбор лопаты из рельсовой стали

Выбирая лопату, основными моментами, на которые следует обратить внимание, являются общая конструкция полотна и эргономичность инструмента. Что касается общей конструкции полотна, то лучше всего подбирать лопату с дополнительными ребрами жесткости. Такой инструмент намного тяжелее сломать или погнуть в процессе работы.

Что касается эргономичности лопаты, то основной нюанс это уступы для ноги. Они должны иметь правильный угол изгиба. Слишком приподнятый вверх край будет резать ногу при работе, слишком опущенный приведет к соскальзыванию ног. Удобным дополнением является также и ручка на конце черенка. Она облегчает работу с сыпучими материалами или рубку корней.

2.1 Уход за инструментом

Каким бы ни было качество инструмента, чтобы он исправно функционировал на протяжении многих лет, за ним нужно правильно следить и обслуживать:

  1. После окончания работы, лопату нужно сразу же очистить от остатков грунта.
  2. Хранить инструмент лучше в сухих, хорошо вентилируемых местах без доступа влаги.
  3. Черенок лучше окрашивать, причем делать это нужно периодически. Это увеличит срок службы.
  4. Постоянно следить за качеством соединения черенка и рабочего полотна. ни в коем случае не должен шататься. В этом случае его сразу же нужно подбить и закрепить по-новому.

Интервью: Евгений Шур, главный научный сотрудник отделения транспортного металловедения ВНИИЖТа, доктор технических наук

Во ВНИИЖТе приступают к испытаниям новых типов рельсов

– Почему именно сейчас возникла необходимость повысить качество рельсов?

– В последние годы на железных дорогах страны наметился устойчивый рост объёма перевозок, увеличилась грузонапряжённость, введены в обращение длинносоставные и тяжеловесные поезда, принята программа повышения скоростей движения.

В этих условиях железнодорожникам требуются новые, более надёжные рельсы, способные обеспечивать пропуск 700 – 1500 млн тонн грузов в самых тяжёлых условиях эксплуатации без чрезмерного износа и разрушений. Пока они рассчитаны на большинстве участков дорог на пропуск 300 – 700 млн тонн. То есть их ресурс нужно увеличить вдвое, причём в сжатые сроки.

В 2007 году на железных дорогах России было изъято из эксплуатации более 125 тыс. дефектных рельсов. На приобретение и замену вышедших из строя рельсов ОАО «РЖД» затратило в прошлом году более 11 млрд руб. А если учесть, что общая развёрнутая длина наших рельсовых нитей составляет 124 тыс. км, то требования к качеству продукции отечественных металлургических заводов должны быть особенно высоки. Не случайно с 2000 года действует новый стандарт на эти изделия металлургов, ещё более жёсткие требования будут приняты в ближайшее время.

– Что вы предлагаете сделать?

– Прежде всего нужно повысить требования к качеству рельсов, которые металлурги должны изготавливать по самым современным технологиям. Срок их службы требуется повысить как минимум в два раза. Не менее важная задача – увеличение длины цельнокатаных рельсов с 25 до 100 м (за рубежом уже выпускают 150-метровые экземпляры). Ведь чем меньше сварных стыков, тем меньше неприятностей на дорогах. Для этого необходимо быстрее внедрять инновационные технологии, которые позволили бы отечественным металлургам выпускать высококачественную продукцию, ни в чём не уступающую лучшим зарубежным образцам.

Считаю, что пора расширить номенклатуру типов выпускаемых в нашей стране рельсов. Для организации в России высокоскоростного пассажирского движения со скоростями до 350 км/ч необходимы рельсы категории ВС. Для повышения скорости движения пассажирских поездов до 200 км/ч на ряде направлений сети дорог нужны рельсы для скоростного совмещённого движения категории СС. А для магистралей Сибири и Крайнего Севера подходят рельсы повышенной хладостойкости и низкотемпературной надёжности категорий НК и НЭ.

Кроме того, для участков пути с кривыми малых и средних радиусов, где рельсы особенно часто выходят из строя, требуются рельсы повышенной износостойкости и контактной выносливости категории И. Причём все эти изделия должны быть вдвое лучше по качеству и надёжности, чем выпускаемые сегодня. Пока отечественные рельсы уступают продукции мировых лидеров.

В 2007 году на железных дорогах России было изъято из эксплуатации более 125 тыс. дефектных рельсов, вышедших из строя из-за низкого качества стали

– В чём причина такого отставания?

– В начале 70-х годов прошлого века на наших предприятиях внедрили передовую по тем временам технологию термической обработки рельсов. Благодаря этому методу на протяжении двух десятилетий мы выпускали лучшую в мире продукцию. Но затем в связи с начавшимся экономическим кризисом средств на модернизацию производства в нашей стране не выделяли, и зарубежные конкуренты из Японии, Франции и Австрии, освоив прогрессивные технологии, вышли на передовые позиции.
Правда, за последние 10 лет нашим металлургам удалось многое поправить. Отказавшись от выпуска рельсов из мартеновской стали, они начали производить их из непрерывно-литой кислородно-конвертерной стали и электростали. Стали использовать метод непрерывной разливки, применять печи для нагрева заготовок перед прокаткой, вальцетокарные станки с ЧПУ и другие новинки. Причём на улучшение качества рельсов повлияли не только достижения мировых лидеров, но и жёсткие требования ОАО «РЖД», а также большая работа, проделанная учёными ВНИИЖТа и других институтов на металлургических заводах страны по совершенствованию технологий производства транспортного металла.

Хотя импортная продукция пока всё-таки лучше по многим характеристикам – по геометрии, прямолинейности, качеству поверхности и отделки, по твёрдости, прочности и износостойкости.

– Что мешает отечественным заводам выпускать рельсы, не уступающие лучшим мировым аналогам?
– Прежде всего нехватка высококлассного оборудования, а без коренной реконструкции и модернизации заводов успеха наверняка не добьёшься. Другая не менее важная причина – отсутствие конкуренции. Сегодня в России рельсы выпускают только два предприятия – Нижнетагильский и Новокузнецкий металлургический комбинаты, принадлежащие одному владельцу – ООО «ЕвразХолдинг». Но есть надежда, что скоро монополизму на этом рынке придёт конец. В ближайшие годы высококачественные рельсы начнут производить на Челябинском металлургическом комбинате, где для этого построят специальный цех и установят самое современное оборудование. Кроме того, по соседству с заводом решено разместить крупное рельсосварочное предприятие, где из выпускаемых 100-метровых рельсов будут сваривать 800-метровые плети для бесстыкового пути. Важно также стимулировать заводы, закупая более долговечные рельсы по более высокой цене.

Важно организовать серийный выпуск рельсов нового типа. Для этого нужно осуществить переход металлургических комбинатов на прокатку рельсов в универсальных плетях, внедрить технологию гидросбива окалины, установить оборудование автоматического контроля отсутствия дефектов и прямолинейности рельсов, повысить степень компьютеризации всего производственного процесса.

– Какие разработки учёных сейчас осваивают металлурги?

– Для длительной эксплуатации в условиях больших осевых нагрузок, высокой грузонапряжённости и кривых участков пути наиболее подходят рельсы с повышенным до 0,83 – 1,0% содержанием углерода в стали. Испытания на Экспериментальном кольце ВНИИЖТа и опытная эксплуатация на Южно-Уральской, Октябрьской и Горьковской железных дорогах показали, что их ресурс существенно выше, чем у обычных образцов. Основываясь на полученных результатах, отечественные металлургические комбинаты уже начинают выпускать такие рельсы, правда, пока небольшими партиями. Кстати, данная марка стали, названная «заэвтектоидной», создана учёными и металлургами нашей страны, а вот широкое применение она почему-то пока нашла только за рубежом.

По нашему мнению, дальнейшее повышение работоспособности рельсов возможно также при переходе на новую структурную основу стали. Из двух возможных вариантов (мартенсит и бейнит) специалисты отдают предпочтение бейниту. В настоящее время наши металлурги уже разработали низколегированную рельсовую сталь с бейнитной структурой, позволяющей увеличить прочность металла с одновременным понижением содержания углерода, что, в свою очередь, положительно отразится на его стойкости к термомеханическим повреждениям. Проведённые лабораторные и стендовые испытания дали обнадёживающие результаты. Теперь новый тип рельсов предстоит обкатать на Экспериментальном кольце ВНИИЖТа в Щербинке.

Беседовал Александр Давидьянц

[Статья] Рельсовая сталь и маркировка рельсов

Рельсовая сталь и маркировка рельсов


Рельсовая сталь

Материалом для рельсов служит рельсовая сталь. Рельсы изготавливаются двух групп: I группа - из спокойной мартеновской стали, раскисленной в ковше комплексными раскислителя-ми без применения алюминия или других раскислителей, образующих в стали вредные строчечные неметаллические включения; II группа - из спокойной мартеновской стали, раскисленной алюминием или марганец-алю-миниевым сплавом.

Качество стали определяется ее химическим составом (табл. 1.2).


С повышением в стали углерода С повышается общая прочность рельсов при изгибе, твердость и износостойкость. Марганец Mn увеличивает твердость, износостойкость и вязкость рельсовой стали, а кремний Si - твердость и износостойкость. Фосфор Р и сера S - вредные примеси. При низких температурах рельсы с большим содержанием фосфора становятся хрупкими, а серы - красноломкими (при прокате рельсов образуются трещины). Ванадий, титан и цирконий - микролегирующие и модифицирующие добавки, улучшающие структуру и качество стали.

Макроструктура современной углеродистой рельсовой стали представляет пластинчатый перлит с небольшими прожилками феррита на границах перлитных зерен. Значительная твердость, сопротивление износу и вязкость углеродистых сталей достигаются приданием им однородной сорбитной структуры (с помощью специальной термической обработки).

Механические свойства стали для рельсов I и II групп при испытаниях на растяжение должны соответствовать данным, приведенным в табл. 1.3.

Эти данные соответствуют рельсам, изготовленным из мартеновской стали, не закаленным по всей длине.

Сталь для рельсов должна иметь чистое, однородное, плотное мелкозернистое строение (макроструктуру).

Технология изготовления рельсов должна гарантировать отсутствие в них флокенов, а также местных неметаллических включений (глинозема, карбидов и нитридов титана или глинозема, сцементированного силикатами), вытянутыми вдоль направления проката в виде дорожек - строчек.

Поверхность головки рельса на его концах подвергается закалке с прокатного или индукционного нагрева токами высокой частоты.

Для обеспечения большей износостойкости и долговечности рельсы изготавливают из мартеновской высокоуглеродистой стали (типы Р75, Р65, Р50), подвергая их герметической обработке по всей длине путем объемной закалки в масле с последующим печным отпуском (ГОСТ 18267-82). Макроструктура закаленного металла головки рельса представляет собой сорбит закалки. Твердость по Бринеллю на поверхности катания головки закаленных рельсов должна быть в пределах 341-388 НВ, шейки и подошвы - не более 388 НВ.


Механические свойства объемноза-каленных рельсов должны характеризоваться величинами не менее указанных ниже:

Рельсы, полностью удовлетворяющие техническим требованиям и стандартам, относятся к 1-му сорту. Рельсы, имеющие отклонения в химическом составе и механических свойствах, относятся ко 2-му сорту.

Объемнозакаленные рельсы имеют срок службы в 1,3-1,5 раза выше, чем обычные.

Условия эксплуатации рельсов на дорогах Сибири и Дальнего Востока почти вдвое тяжелее, чем в Европейской части России. Поэтому в настоящее время созданы рельсы низкотемпературной надежности Р65, объемнозакаленные I группы, изготовляемые из ванадий-ниобий-боросодержащей стали с использованием для легирования азотированных ферросплавов. Для этих рельсов используется электросталь, варка которой производится в дуговых печах.

При температуре минус 60 °С рельсы из электростали выдерживают ударные нагрузки вдвое большие, чем рельсы из мартеновской стали.

В настоящее время российские рельсы - одни из лучших в мире. Однако японские, французские, шведские и канадские рельсы имеют значительно более низкий уровень собственных напряжений и большую чистоту рельсовой стали, а также прямолинейность. Именно поэтому сейчас началась их закупка для участков скоростного движения российских железных дорог.

Маркировка, сроки службы рельсов и мероприятия по их продлению

Маркировка рельсов производится для правильной укладки их в путь и для определения места и времени изготовления каждого отдельного рельса. Она подразделяется на основную (постоянную), выполняемую во время прокатки клеймением в горячем и холодном состоянии (рис. 1.2) и дополнительную или временную, выполненную краской. Основная заводская маркировка указывает соответствие рельсов


требованиям стандартов, а дополнительная отмечает особенности каждого рельса (укорочение, сорт и т. д.).

Завод, изготовляющий рельсы, гарантирует исправную службу рельсов в пути в течение срока наработки, исчисляемого в миллионах тонн брутто пропущенного тоннажа Т. Рельсы изымаются с пути или по износу головки или по дефектности. Как правило, вертикальный износ головки не достигает предельных значений при норме наработки Т, при которой производят сплошную смену рельсов из-за их предельного выхода по одиночным дефектам.

В настоящее время принята классификация дефектов рельсов, приведенная в табл. 1.4.

Интенсивность одиночного выхода рельсов зависит от их наработки (пропущенного по ним тоннажа), конструкции пути, нагрузок на рельсы от колесных пар обращающегося подвижного состава, плана и профиля пути, типа рельсов, качества стали и других факторов. На рис. 1.3 приведены осредненные для сети бывшего СССР кривые нарастания одиночного изъятия нетермообработанных рельсов на прямых и пологих кривых в зависимости от пропущенного тоннажа при звеньевом пути на деревянных шпалах.

Объемнозакаленные рельсы имеют значительно меньший выход, что видно, например, на графике рис. 1.4 для линии С.-Петербург - Москва.

Наибольшее одиночное изъятие дефектных рельсов производится из-за недостаточной контактно-усталостной прочности металла, из-за чрезмерного бокового износа головки в кривых и из-за коррозии подошвы рельса и кор-розионно-усталостных трещин (дефекты 44, 17, 21, 14, 11, 69 - см. табл. 1.4).



Продление сроков службы рельсов в настоящее время производится путем применения ресурсосберегающих технологий, в частности, хорошим средством восстановления служебных свойств рельсов является их периодическая шлифовка в пути или острожка старогодных рельсов на рельсосварочных предприятиях. Для шлифовки рельсов применяются рельсошлифовальные механизмы и рельсошлифовальные поезда с абразивными кругами.

Повышение качества рельсов ведется по трем основным направлениям: повышение чистоты рельсовой стали; повышение твердости рельсового металла и улучшение его структуры; повышение прямолинейности рельсов при изготовлении. Разрабатывается также рельс Р65ш, который будет иметь запас в высоте головки (6...7 мм) на последующую шлифовку.

__________________

Зарегистрируйтесь , чтобы скачивать файлы.
Внимание! Перед скачиванием книг и документов установите программу для просмотра книг отсюда
. Примите участие в развитии ж/д вики-словаря / Журнал "АСИ" онлайн

Книги по СЦБ | Книги путейцам | Книги машинистам | Книги движенцам | Книги вагонникам | Книги связистам | Книги по метрополитенам | Указания ГТСС


Если не можете скачать файл... / Наше приложение ВКонтакте / Покупаем электронные версии ж.д. документов

Современный железнодорожный транспорт не похож на тот, что был 100 лет назад. Скорость поездов с того времени увеличилась почти в 5 раз, а грузоподъемность в 8-10. Такие количественные изменения не могли не затронуть и рельсы, по которым перемещается локомотив. Их износостойкость, прочность и твердость также достигли нового уровня своих значений. В нынешнее время рельсовая сталь обладает целом рядом функциональных особенностей.

Химический состав

Рельсовая сталь - это группа сталей, которых объединяет общий способ применения. А именно, изготовление рельсовых путей сообщения для железнодорожного транспорта. В основе фазовой структуры сплава лежит мелко игольчатый перлит. Для выплавки металла используют либо конверторные, либо обычные дуговые сталеплавильные печи.

Рельсовые марки стали подразделяются на 2 группы в зависимости от вида применяемых раскислителей:

  1. В 1-ую группу входит сталь, раскисленная ферромарганцем или ферросилицием.
  2. Вторая - включает в себя раскислители на основе алюминия. Металл 2-ой группы является предпочтительней, т.к. содержит в себе меньший процент неметаллических включений.

Химический состав рельсы полностью регулируется государственным стандартом ГОСТ Р 554 97- 2013. Согласно ему, помимо основного компонента железа, сплав должен включать в себя следующий набор элементов:

  • Углерод (0,71-0,82%) является базовой составляющей любой стали. Главное назначение углерода - это увеличение механических характеристик стального сплава. Происходит это за счет связывания молекул железа частицами углерода, в результате чего образуются более крупные, твердые и одновременно прочные молекулы карбидов железа. К тому же углерод позволяет стали дополнительно упрочняться при воздействии на нее повышенной температуры. Таким образом, твердость и предел прочности рельс может быть увеличен еще на 100%.
  • Марганец (0,25-1,05%) способствует улучшению механических свойств рельсы. Благодаря его добавлению в состав удается увеличить значение ударной вязкости в среднем на 20-30%. Твердость и износостойкость также повышаются. Но в отличие от углерода, изменение данных показателей происходит без ухудшения его пластичных свойств, что играет не мало важную роль для технологичности рельсовой стали
  • Кремний (0,18-0,40%) удаляет остатки кислорода, улучшая тем самым внутреннюю кристаллическую структуру. Снижает вероятность риска образования ликвации - химической неоднородности сплава по своему химическому составу. Все это дает возможность увеличить долговечность железнодорожного пути в 1,3-1,5 раза.
  • Ванадий (0,08-0,012%) ответственен за контактную прочность рельсы. При добавлении его в сплав он сразу же связывается углеродом, образовывая карбиды ванадия. Данное соединение имеет повышенную износостойкость и плотность, тем самым увеличивая нижний порог предела выносливости сплава.
  • Азот (0,03-0,07%) относится к группе вредных примесей. Его отрицательное воздействие заключается в нейтрализации легирования стали ванадием. Т.е. вместо карбидов образуются нитриды ванадия. Они обладают низкими значениями механических свойств. Не способны термоупрочняться. В общем, сводят дорогостоящее легирование ванадием на нет.
  • Фосфор (до 0,035%) входит в группу нежелательных элементов в составе. Его главный отрицательный эффект - это повышение их хрупкости. Железнодорожное полотно обладает достаточной твердостью, но при этом не имеет должного значения прочности. Все это приводит к высокой вероятности образования трещин и последующему разлому рельсы.
  • Сера (до 0,045%) снижает технологические параметры стали. Податливость сплава во время его горячей обработки давлением резко падает. Возникает повышенный риск образования трещин. Рельсы, полученные из такой стали, отправляются в брак по причине обладания повышенной хрупкостью.

В зависимости от содержания серы и фосфора рельсовые стали подразделяются 2 сорта. Первый сорт имеет в своем составе меньший процент данных вредных примесей. Он более предпочтителен и применяется на более ответственных участках железнодорожного пути.

Механические свойства

Рельсовые марки стали отличаются повышенной стойкостью к циклическим нагрузкам. Их предел прочности в зависимости от марки колеблется в пределах от 800 до 1000 МПа. Деформироваться рельсовая сталь начинает в промежутке от 600 до 810 МПа. Опять же, это зависит от того соотношения легирующих элементов в составе стального сплава

Сталь хорошо справляется с ударной нагрузкой. Значение ударной вязкости составляет 2,5 кг/см2. Твердость сплава находится в прямой зависимости от качества проведения термической обработки. Объемная закалка способно увеличить данный параметр до 60 единиц по шкале Роквелла.

Рельсовая марка обладает умеренной пластичностью. Относительное сужение для нее равняется 25%, что позволяет прокатывать рельсы горячим способом. Предварительно нагрев их до температуры 900-1000 ºC.

Применение и марки рельсовой стали

Как уже было сказано ранее, основное назначение данного металла — это изготовление рельс железнодорожного пути. Ниже приведен список тех марок, которые наиболее активно применяются для этой цели:

  • Сталь 76. Одна из наиболее востребованных марок в производстве рельс. Основное назначение - изготовление рельс типа РП50 и РП65, которые применяется преимущественно при прокладке железнодорожных путей промышленного транспорта с широкой колеёй.
  • Сталь 76Ф. От вышеописанной стали ее отличает дополнительное содержание ванадия в своем составе. Рельсы данной марки обладают большим ресурсом работы - способны пропускать через себя большее количество локомотивов.
  • Сталь К63. Данная марка используется при изготовлении крановых рельс. Она дополнительно легирована 0,3% никеля. Металл помимо оптимальной прочности, обладает несколько лучшим значением коррозионностойкости.
  • Сталь К63Ф. Рельсы, изготовленные из данной марки, отличаются большей циклической прочностью за счет добавления в их состав вольфрама.
  • Сталь М54. Имеет повышенное содержание марганца. Применяется для производства стыковочных рельс-накладок.
  • Сталь М68. Используются при прокладке путей верхнего строения.

Рельсовая марка стали сегодня является одним из ключевых материалов, применяемых при изготовлении железнодорожного полотна. Это стало благодаря оптимальным значениям механических характеристик и, что не менее важно, низкой стоимостью такого рода рельс. Но до сих пор, процесс по поиску оптимального химического состава стали данной группы продолжается. Кто знает какие решения будут приняты через год, и как они повлияют на долговечность железнодорожных путей.

Вверх