II. Молекулярная физика. Принципы действия тепловых двигателей Как определяется кпд теплового двигателя

Двигатель, в котором происходит превращение внутренней энергии топлива, которое сгорает, в механическую работу.

Любой тепловой двигатель состоит из трех основных частей: нагревателя , рабочего тела (газ, жидкость и др.) и холодильника . В основе работы двигателя лежит циклический процесс (это процесс, в результате которого система возвращается в исходное состояние).

Прямой цикл теплового двигателя

Общее свойство всех циклических (или круговых) процессов состоит в том, что их невозможно провести, приводя рабочее тело в тепловой контакт только с одним тепловым резервуаром. Их нужно, по крайней мере, два. Тепловой резервуар с более высокой температурой называют нагревателем, а с более низкой – холодильником. Совершая круговой процесс, рабочее тело получает от нагревателя некоторое количество теплоты Q 1 (происходит расширение) и отдает холодильнику количество теплоты Q 2 , когда возвращается в исходное состояние и сжимается. Полное количество теплоты Q=Q 1 -Q 2 , полученное рабочим телом за цикл, равно работе, которую выполняет рабочее тело за один цикл.

Обратный цикл холодильной машины

При обратном цикле расширение происходит при меньшем давлении, а сжатие - при большем. Поэтому работа сжатия больше, чем работа расширения, работу выполняет не рабочее тело, а внешние силы. Эта работа превращается в теплоту. Таким образом, в холодильной машине рабочее тело забирает от холодильника некоторое количество теплоты Q 1 и передает нагревателю большее количество теплоты Q 2 .

Коэффициент полезного действия

Прямой цикл:


Показатель эффективности холодильной машины:


Цикл Карно

В тепловых двигателях стремятся достигнуть наиболее полного превращения тепловой энергии в механическую. Максимальное КПД.

На рисунке изображены циклы, используемые в бензиновом карбюраторном двигателе и в дизельном двигателе. В обоих случаях рабочим телом является смесь паров бензина или дизельного топлива с воздухом. Цикл карбюраторного двигателя внутреннего сгорания состоит из двух изохор (1–2, 3–4) и двух адиабат (2–3, 4–1). Дизельный двигатель внутреннего сгорания работает по циклу, состоящему из двух адиабат (1–2, 3–4), одной изобары (2–3) и одной изохоры (4–1). Реальный коэффициент полезного действия у карбюраторного двигателя порядка 30%, у дизельного двигателя – порядка 40 %.

Французский физик С.Карно разработал работу идеального теплового двигателя. Рабочую часть двигателя Карно можно представить себе в виде поршня в заполненном газом цилиндре. Поскольку двигатель Карно - машина чисто теоретическая, то есть идеальная , силы трения между поршнем и цилиндром и тепловые потери считаются равными нулю. Механическая работа максимальна, если рабочее тело выполняет цикл, состоящий из двух изотерм и двух адиабат. Этот цикл называют циклом Карно .

участок 1-2: газ получает от нагревателя количество теплоты Q 1 и изотермически расширяется при температуре T 1
участок 2-3: газ адиабатически расширяется, температура снижается до температуры холодильника T 2
участок 3-4: газ экзотермически сжимается, при этом он отдает холодильнику количество теплоты Q 2
участок 4-1: газ сжимается адиабатически до тех пор, пока его температура не повысится до T 1 .
Работа, которую выполняет рабочее тело - площадь полученной фигуры 1234.

Функционирует такой двигатель следующим образом:

1. Сначала цилиндр вступает в контакт с горячим резервуаром, и идеальный газ расширяется при постоянной температуре. На этой фазе газ получает от горячего резервуара некое количество тепла.
2. Затем цилиндр окружается идеальной теплоизоляцией, за счет чего количество тепла, имеющееся у газа, сохраняется, и газ продолжает расширяться, пока его температура не упадет до температуры холодного теплового резервуара.
3. На третьей фазе теплоизоляция снимается, и газ в цилиндре, будучи в контакте с холодным резервуаром, сжимается, отдавая при этом часть тепла холодному резервуару.
4. Когда сжатие достигает определенной точки, цилиндр снова окружается теплоизоляцией, и газ сжимается за счет поднятия поршня до тех пор, пока его температура не сравняется с температурой горячего резервуара. После этого теплоизоляция удаляется и цикл повторяется вновь с первой фазы.

Современные реалии предполагают широкую эксплуатацию тепловых двигателей. Многочисленные попытки замены их на электродвигатели пока претерпевают неудачу. Проблемы, связанные с накоплением электроэнергии в автономных системах, решаются с большим трудом.

Все еще актуальны проблемы технологии изготовления аккумуляторов электроэнергии с учетом их длительного использования. Скоростные характеристики электромобилей далеки от таковых у авто на двигателях внутреннего сгорания.

Первые шаги по созданию гибридных двигателей позволяют существенно уменьшить вредные выбросы в мегаполисах, решая экологические проблемы.

Немного истории

Возможность превращения энергии пара в энергию движения была известна еще в древности. 130 год до нашей эры: Философ Герон Александрийский представил на суд зрителей паровую игрушку - эолипил. Сфера, заполненная паром, приходила во вращение под действием исходящих из нее струй. Этот прототип современных паровых турбин в те времена не нашел применения.

Долгие годы и века разработки философа считались лишь забавной игрушкой. В 1629 г. итальянец Д. Бранки создал активную турбину. Пар приводил в движение диск, снабженный лопатками.

С этого момента началось бурное развитие паровых машин.

Тепловая машина

Превращение топлива в энергию движения частей машин и механизмов используется в тепловых машинах.

Основные части машин: нагреватель (система получения энергии извне), рабочее тело (совершает полезное действие), холодильник.

Нагреватель предназначен для того, чтобы рабочее тело накопило достаточный запас внутренней энергии для совершения полезной работы. Холодильник отводит излишки энергии.

Основной характеристикой эффективности называют КПД тепловых машин. Эта величина показывает, какая часть затраченной на нагревание энергии расходуется на совершение полезной работы. Чем выше КПД, тем выгоднее работа машины, но эта величина не может превышать 100%.

Расчет коэффициента полезного действия

Пусть нагреватель приобрел извне энергию, равную Q 1 . Рабочее тело совершило работу A, при этом энергия, отданная холодильнику, составила Q 2 .

Исходя из определения, рассчитаем величину КПД:

η= A / Q 1 . Учтем, что А = Q 1 - Q 2.

Отсюда КПД тепловой машины, формула которого имеет вид η= (Q 1 - Q 2)/ Q 1 = 1 - Q 2 / Q 1, позволяет сделать следующие выводы:

  • КПД не может превышать 1 (или 100%);
  • для максимального увеличения этой величины необходимо либо повышение энергии, полученной от нагревателя, либо уменьшение энергии, отданной холодильнику;
  • увеличения энергии нагревателя добиваются изменением качества топлива;
  • уменьшения энергии, отданной холодильнику, позволяют добиться конструктивные особенности двигателей.

Идеальный тепловой двигатель

Возможно ли создание такого двигателя, коэффициент полезного действия которого был бы максимальным (в идеале - равным 100%)? Найти ответ на этот вопрос попытался французский физик-теоретик и талантливый инженер Сади Карно. В 1824 его теоретические выкладки о процессах, протекающих в газах, были обнародованы.

Основной идеей, заложенной в идеальной машине, можно считать проведение обратимых процессов с идеальным газом. Начинаем с расширения газа изотермически при температуре T 1 . Количество теплоты, необходимой для этого, - Q 1. После газ без теплообмена расширяется Достигнув температуры Т 2 , газ сжимается изотермически, передавая холодильнику энергию Q 2 . Возвращение газа в первоначальное состояние производится адиабатно.

КПД идеального теплового двигателя Карно при точном расчете равен отношению разности температур нагревательного и охлаждающего устройств к температуре, которую имеет нагреватель. Выглядит это так: η=(T 1 - Т 2)/ T 1.

Возможный КПД тепловой машины, формула которого имеет вид: η= 1 - Т 2 / T 1 , зависит только от значения температур нагревателя и охладителя и не может быть более 100%.

Более того, это соотношение позволяет доказать, что КПД тепловых машин может быть равен единице только при достижении холодильником температур. Как известно, это значение недостижимо.

Теоретические выкладки Карно позволяют определить максимальный КПД тепловой машины любой конструкции.

Доказанная Карно теорема звучит следующий образом. Произвольная тепловая машина ни при каких условиях не способна иметь коэффициент полезного действия больше аналогичного значения КПД идеальной тепловой машины.

Пример решения задач

Пример 1. Каков КПД идеальной тепловой машины, в случае если температура нагревателя составляет 800 о С, а температура холодильника на 500 о С ниже?

T 1 = 800 о С= 1073 К, ∆T= 500 о С=500 К, η - ?

По определению: η=(T 1 - Т 2)/ T 1.

Нам не дана температура холодильника, но ∆T= (T 1 - Т 2), отсюда:

η= ∆T / T 1 = 500 К/1073 К = 0,46.

Ответ: КПД = 46%.

Пример 2. Определите КПД идеальной тепловой машины, если за счет приобретенного одного килоджоуля энергии нагревателя совершается полезная работа 650 Дж. Какова температура нагревателя тепловой машины, если температура охладителя - 400 К?

Q 1 = 1 кДж=1000 Дж, А = 650 Дж, Т 2 = 400 К, η - ?, T 1 = ?

В данной задаче речь идет о тепловой установке, КПД которой можно вычислить по формуле:

Для определения температуры нагревателя воспользуемся формулой КПД идеальной тепловой машины:

η = (T 1 - Т 2)/ T 1 = 1 - Т 2 / T 1.

Выполнив математические преобразования, получим:

Т 1 = Т 2 /(1- η).

Т 1 = Т 2 /(1- A / Q 1).

Вычислим:

η= 650 Дж/ 1000 Дж = 0,65.

Т 1 = 400 К /(1- 650 Дж/ 1000 Дж) = 1142,8 К.

Ответ: η= 65%, Т 1 = 1142,8 К.

Реальные условия

Идеальный тепловой двигатель разработан с учетом идеальных процессов. Работа совершается только в изотермических процессах, ее величина определяется как площадь, ограниченная графиком цикла Карно.

В действительности создать условия для протекания процесса изменения состояния газа без сопровождающих его изменений температуры невозможно. Нет таких материалов, которые исключили бы теплообмен с окружающими предметами. Адиабатный процесс осуществить становится невозможно. В случае теплообмена температура газа обязательно должна меняться.

КПД тепловых машин, созданных в реальных условиях, значительно отличаются от КПД идеальных двигателей. Заметим, что протекание процессов в реальных двигателях происходит настолько быстро, что варьирование внутренней тепловой энергии рабочего вещества в процессе изменения его объема не может быть скомпенсировано притоком количества теплоты от нагревателя и отдачей холодильнику.

Иные тепловые двигатели

Реальные двигатели работают на иных циклах:

  • цикл Отто: процесс при неизменном объеме меняется адиабатным, создавая замкнутый цикл;
  • цикл Дизеля: изобара, адиабата, изохора, адиабата;
  • процесс, происходящий при постоянном давлении, сменяется адиабатным, замыкает цикл.

Создать равновесные процессы в реальных двигателях (чтобы приблизить их к идеальным) в условиях современной технологии не представляется возможным. КПД тепловых машин значительно ниже, даже с учетом тех же температурных режимов, что и в идеальной тепловой установке.

Но не стоит уменьшать роль расчетной формулы КПД поскольку именно она становится точкой отсчета в процессе работы над повышением КПД реальных двигателей.

Пути изменения КПД

Проводя сравнение идеальных и реальных тепловых двигателей, стоит отметить, что температура холодильника последних не может быть любой. Обычно холодильником считают атмосферу. Принять температуру атмосферы можно только в приближенных расчетах. Опыт показывает, что температура охладителя равна температуре отработанных в двигателях газов, как это происходит в двигателях внутреннего сгорания (сокращенно ДВС).

ДВС - наиболее распространенная в нашем мире тепловая машина. КПД тепловой машины в этом случае зависит от температуры, созданной сгорающим топливом. Существенным отличием ДВС от паровых машин является слияние функций нагревателя и рабочего тела устройства в воздушно-топливной смеси. Сгорая, смесь создает давление на подвижные части двигателя.

Повышения температуры рабочих газов достигают, существенно меняя свойства топлива. К сожалению, неограниченно это делать невозможно. Любой материал, из которого изготовлена камера сгорания двигателя, имеет свою температуру плавления. Теплостойкость таких материалов - основная характеристика двигателя, а также возможность существенно повлиять на КПД.

Значения КПД двигателей

Если рассмотреть температура рабочего пара на входе которой равна 800 К, а отработавшего газа - 300 К, то КПД этой машины равно 62%. В действительности же эта величина не превышает 40%. Такое понижение возникает вследствие тепловых потерь при нагревании корпуса турбин.

Наибольшее значение внутреннего сгорания не превышает 44%. Повышение этого значения - вопрос недалекого будущего. Изменение свойств материалов, топлива - это проблема, над которой работают лучшие умы человечества.

КПД теплового двигателя. Согласно закону сохранения энергии работа, совершаемая двигателем, равна:

где - теплота, полученная от нагревателя, - теплота, отданная холодильнику.

Коэффициентом полезного действия теплового двигателя называют отношение работы совершаемой двигателем, к количеству теплоты полученному от нагревателя:

Так как у всех двигателей некоторое количество теплоты передается холодильнику, то во всех случаях

Максимальное значение КПД тепловых двигателей. Французский инженер и ученый Сади Карно (1796 1832) в труде «Размышление о движущей силе огня» (1824) поставил цель: выяснить, при каких условиях работа теплового двигателя будет наиболее эффективной, т. е. при каких условиях двигатель будет иметь максимальный КПД.

Карно придумал идеальную тепловую машину с идеальным газом в качестве рабочего тела. Он вычислил КПД этой машины, работающей с нагревателем температуры и холодильником температуры

Главное значение этой формулы состоит в том, как доказал Карно, опираясь на второй закон термодинамики, что любая реальная тепловая машина, работающая с нагревателем температуры и холодильником температуры не может иметь коэффициент полезного действия, превышающий КПД идеальной тепловой машины.

Формула (4.18) дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю,

Но температура холодильника практически не может быть намного ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими. Так, для паровой турбины начальные и конечные температуры пара примерно таковы: При этих температурах максимальное значение КПД равно:

Действительное же значение КПД из-за различного рода энергетических потерь равно:

Повышение КПД тепловых двигателей, приближение его к максимально возможному - важнейшая техническая задача.

Тепловые двигатели и охрана природы. Повсеместное применение тепловых двигателей с целью получения удобной для использования энергии в наибольшей степени, по сравнению со

всеми другими видами производственных процессов, связано с воздействием на окружающую среду.

Согласно второму закону термодинамики производство электрической и механической энергии в принципе не может быть осуществлено без отвода в окружающую среду значительных количеств теплоты. Это не может не приводить к постепенному повышению средней температуры на Земле. Сейчас потребляемая мощность составляет около 1010 кВт. Когда эта мощность достигнет то средняя температура повысится заметным образом (примерно на один градус). Дальнейшее повышение температуры может создать угрозу таяния ледников и катастрофического повышения уровня мирового океана.

Но этим далеко не исчерпываются негативные последствия применения тепловых двигателей. Топки тепловых электростанций, двигатели внутреннего сгорания автомобилей и т. д. непрерывно выбрасывают в атмосферу вредные для растений, животных и человека вещества: сернистые соединения (при сгорании каменного угля), оксиды азота, углеводороды, оксид углерода (СО) и др. Особую опасность в этом отношении представляют автомобили, число которых угрожающе растет, а очистка отработанных газов затруднена. На атомных электростанциях встает проблема захоронения опасных радиоактивных отходов.

Кроме того, применение паровых турбин на электростанциях требует больших площадей под пруды для охлаждения отработанного пара С увеличением мощностей электростанций резко возрастает потребность в воде. В 1980 г. в нашей стране для этих целей требовалось около воды, т. е. около 35% водоснабжения всех отраслей хозяйства.

Все это ставит ряд серьезных проблем перед обществом. Наряду с важнейшей задачей повышения КПД тепловых двигателей требуется проводить ряд мероприятий по охране окружающей среды. Необходимо повышать эффективность сооружений, препятствующих выбросу в атмосферу вредных веществ; добиваться более полного сгорания топлива в автомобильных двигателях. Уже сейчас не допускаются к эксплуатации автомобили с повышенным содержанием СО в отработанных газах. Обсуждается возможность создания электромобилей, способных конкурировать с обычными, и возможность применения горючего без вредных веществ в отработанных газах, например в двигателях, работающих на смеси водорода с кислородом.

Целесообразно для экономии площади и водных ресурсов сооружать целые комплексы электростанций, в первую очередь атомных, с замкнутым циклом водоснабжения.

Другое направление прилагаемых усилий - это увеличение эффективности использования энергии, борьба за ее экономию.

Решение перечисленных выше проблем жизненно важно для человечества. И эти проблемы с максимальным успехом могут

быть решены в социалистическом обществе с плановым развитием экономики в масштабах страны. Но организация охраны окружающей среды требует усилий в масштабе земного шара.

1. Какие процессы называются необратимыми? 2. Назовите наиболее типичные необратимые процессы. 3. Приведите примеры необратимых процессов, не упомянутых в тексте. 4. Сформулируйте второй закон термодинамики. 5. Если бы реки потекли вспять, означало бы это нарушение закона сохранения энергии? 6. Какое устройство называют тепловым двигателем? 7. Какова роль нагревателя, холодильника и рабочего тела теплового двигателя? 8. Почему в тепловых двигателях нельзя использовать в качестве источника энергии внутреннюю энергию океана? 9. Что называется коэффициентом полезного действия теплового двигателя?

10. Чему равно максимально возможное значение коэффициента полезного действия теплового двигателя?

И полезные формулы .

Задачи по физике на КПД теплового двигателя

Задача на вычисление КПД теплового двигателя №1

Условие

Вода массой 175 г подогревается на спиртовке. Пока вода нагрелась от t1=15 до t2=75 градусов Цельсия, масса спиртовки уменьшилась с 163 до 157 г Вычислите КПД установки.

Решение

Коэффициент полезного действия можно вычислить как отношение полезной работы и полного количества теплоты, выделенного спиртовкой:

Полезная работа в данном случае – это эквивалент количества теплоты, которое пошло исключительно на нагрев. Его можно вычислить по известной формуле:

Полное количество теплоты вычисляем, зная массу сгоревшего спирта и его удельную теплоту сгорания.

Подставляем значения и вычисляем:

Ответ: 27%

Задача на вычисление КПД теплового двигателя №2

Условие

Старый двигатель совершил работу 220,8 МДж, при этом израсходовав 16 килограмм бензина. Вычислите КПД двигателя.

Решение

Найдем общее количество теплоты, которое произвел двигатель:

Или, умножая на 100, получаем значение КПД в процентах:

Ответ: 30%.

Задача на вычисление КПД теплового двигателя №3

Условие

Тепловая машина работает по циклу Карно, при этом 80% теплоты, полученной от нагревателя, передается холодильнику. За один цикл рабочее тело получает от нагревателя 6,3 Дж теплоты. Найдите работу и КПД цикла.

Решение

КПД идеальной тепловой машины:

По условию:

Вычислим сначала работу, а затем КПД:

Ответ: 20%; 1,26 Дж.

Задача на вычисление КПД теплового двигателя №4

Условие

На диаграмме изображен цикл дизельного двигателя, состоящий из адиабат 1–2 и 3–4, изобары 2–3 и изохоры 4–1. Температуры газа в точках 1, 2, 3, 4 равны T1 , T2 , T3 , T4 соответственно. Найдите КПД цикла.

Решение

Проанализируем цикл, а КПД будем вычислять через подведенное и отведенное количество теплоты. На адиабатах тепло не подводится и не отводится. На изобаре 2 – 3 тепло подводится, объем растет и, соответственно, растет температура. На изохоре 4 – 1 тепло отводится, а давление и температура падают.

Аналогично:

Получим результат:

Ответ: См. выше.

Задача на вычисление КПД теплового двигателя №5

Условие

Тепловая машина, работающая по циклу Карно, совершает за один цикл работу А = 2,94 кДж и отдаёт за один цикл охладителю количество теплоты Q2 = 13,4 кДж. Найдите КПД цикла.

Решение

Запишем формулу для КПД:

Ответ: 18%

Вопросы на тему тепловые двигатели

Вопрос 1. Что такое тепловой двигатель?

Ответ. Тепловой двигатель – это машина, которая совершает работу за счет энергии, поступающей к ней в процессе теплопередачи. Основные части теплового двигателя: нагреватель, холодильник и рабочее тело.

Вопрос 2. Приведите примеры тепловых двигателей.

Ответ. Первыми тепловыми двигателями, получившими широкое распространение, были паровые машины. Примерами современного теплового двигателя могут служить:

  • ракетный двигатель;
  • авиационный двигатель;
  • газовая турбина.

Вопрос 3. Может ли КПД двигателя быть равен единице?

Ответ. Нет. КПД всегда меньше единицы (или меньше 100%). Существование двигателя с КПД равным единице противоречит первому началу термодинамики.

КПД реальных двигателей редко превышает 30%.

Вопрос 4. Что такое КПД?

Ответ. КПД (коэффициент полезного действия) – отношение работы, которую совершает двигатель, к количеству теплоты, полученному от нагревателя.

Вопрос 5. Что такое удельная теплота сгорания топлива?

Ответ. Удельная теплота сгорания q – физическая величина, которая показывает, какое количество теплоты выделяется при сгорании топлива массой 1 кг. При решении задач КПД можно определять по мощности двигателя N и сжигаемому за единицу времени количеству топлива.

Задачи и вопросы на цикл Карно

Затрагивая тему тепловых двигателей, невозможно оставить в стороне цикл Карно – пожалуй, самый знаменитый цикл работы тепловой машины в физике. Приведем дополнительно несколько задач и вопросов на цикл Карно с решением.

Цикл (или процесс) Карно – это идеальный круговой цикл, состоящий из двух адиабат и двух изотерм. Назван так в честь французского инженера Сади Карно, который описал данный цикл в своем научном труде «О движущей силе огня и о машинах, способных развивать эту силу» (1894).

Задача на цикл Карно №1

Условие

Идеальная тепловая машина, работающая по циклу Карно, совершает за один цикл работу А = 73,5 кДж. Температура нагревателя t1 =100° С, температура холодильника t2 = 0° С. Найти КПД цикла, количество теплоты, получаемое машиной за один цикл от нагревателя, и количество теплоты, отдаваемое за один цикл холодильнику.

Решение

Рассчитаем КПД цикла:

С другой стороны, чтобы найти количество теплоты, получаемое машиной, используем соотношение:

Количество теплоты, отданное холодильнику, будет равно разности общего количества теплоты и полезной работы:

Ответ: 0,36; 204,1 кДж; 130,6 кДж.

Задача на цикл Карно №2

Условие

Идеальная тепловая машина, работающая по циклу Карно, совершает за один цикл работу А=2,94 кДж и отдает за один цикл холодильнику количество теплоты Q2=13,4 кДж. Найти КПД цикла.

Решение

Формула для КПД цикла Карно:

Здесь A – совершенная работа, а Q1 – количество теплоты, которое понадобилось, чтобы ее совершить. Количество теплоты, которое идеальная машина отдает холодильнику, равно разности двух этих величин. Зная это, найдем:

Ответ: 17%.

Задача на цикл Карно №3

Условие

Изобразите цикл Карно на диаграмме и опишите его

Решение

Цикл Карно на диаграмме PV выглядит следующим образом:

  • 1-2. Изотермическое расширение, рабочее тело получает от нагревателя количество теплоты q1;
  • 2-3. Адиабатическое расширение, тепло не подводится;
  • 3-4. Изотермическое сжатие, в ходе которого тепло передается холодильнику;
  • 4-1. Адиабатическое сжатие.

Ответ: см. выше.

Вопрос на цикл Карно №1

Сформулируйте первую теорему Карно

Ответ. Первая теорема Карно гласит: КПД тепловой машины, работающей по циклу Карно, зависит только от температур нагревателя и холодильника, но не зависит ни от устройства машины, ни от вида или свойств её рабочего тела.

Вопрос на цикл Карно №2

Может ли коэффициент полезного действия в цикле Карно быть равным 100%?

Ответ. Нет. КПД цикла карно будет равен 100% только в случае, если температура холодильника будет равна абсолютному нулю, а это невозможно.

Если у вас остались вопросы по теме тепловых двигателей и цикла Карно, вы можете смело задавать их в комментариях. А если нужна помощь в решении задач или других примеров и заданий, обращайтесь в

Коэффициент полезного действия (КПД) - это характеристика результативности системы в отношении преобразования или передачи энергии, который определяется отношением полезно использованной энергии к суммарной энергии, полученной системой.

КПД - величина безразмерная, обычно ее выражают в процентах:

Коэффициент полезного действия (КПД) теплового двигателя определяется по формуле: , где A = Q1Q2. КПД теплового двигателя всегда меньше 1.

Цикл Карно - это обратимый круговой газовый процесс, который состоит из последовательно стоящих двух изотермических и двух адиабатных процессов, выполняемых с рабочим телом.

Круговой цикл, включающий в себя две изотермы и две адиабаты, соответствует максимальному КПД.

Французский инженер Сади Карно в 1824 г. вывел формулу максимального КПД идеального теплового двигателя, где рабочее тело - это идеальный газ, цикл которого состоял из двух изотерм и двух адиабат, т. е. цикл Карно. Цикл Карно - реальный рабочий цикл теплового двигателя, свершающего работу за счет теплоты, подводимой рабочему телу в изотермическом процессе.

Формула КПД цикла Карно, т. е. максимального КПД теплового двигателя имеет вид: , где T1 - абсолютная температура нагревателя, Т2 - абсолютная температура холодильника.

Тепловые двигатели - это конструкции, в которых тепловая энергия превращается в механическую.

Тепловые двигатели многообразны как по конструкции, так и по назначению. К ним относятся паровые машины, паровые турбины, двигатели внутреннего сгорания, реактивные двигатели.

Однако, несмотря на многообразие, в принципе действия различных тепловых двигателей есть общие черты. Основные компоненты каждого теплового двигателя:

  • нагреватель;
  • рабочее тело;
  • холодильник.

Нагреватель выделяет тепловую энергию, при этом нагревает рабочее тело, которое находится в рабочей камере двигателя. Рабочим телом может быть пар или газ.

Приняв количество теплоты, газ расширяется, т.к. его давление больше внешнего давления, и двигает поршень, производя положительную работу. При этом его давление падает, а объем увеличивается.

Если сжимать газ, проходя те же состояния, но в обратном направлении, то совершим ту же по абсолютному значению, но отрицательную работу. В итоге вся работа за цикл будет равна нулю.

Для того чтобы работа теплового двигателя была отлична от нуля, работа сжатия газа должна быть меньше работы расширения.

Чтобы работа сжатия стала меньше работы расширения, необходимо, чтобы процесс сжатия проходил при меньшей температуре, для этого рабочее тело нужно охладить, поэтому в конструкцию теплового двигателя входит холодильник. Холодильнику рабочее тело отдает при соприкосновении с ним количество теплоты.

Вверх