Тиристорный коммутатор зажигания своими руками. Конденсаторная (тиристорная) система зажигания. Монтажная схема модуля

А. Кузьминский, В. Ломановнч

Обычная батарейная система зажигания обладает серьезными недостатками. Наиболее существенные из них: малая мощность искры, быстрый износ контактов прерывателя, коммутирующих ток порядка 4 А в цепи первичной обмотки катушки зажигания, и большая потребляемая мощность (порядка 50 Вт).

Предлагаемые тиристорные системы зажигания позволяют в несколько раз уменьшить мощность, потребляемую от бортсети автомобиля, и в 20—30 раз снизить ток, протекающий через контакты прерывателя. Мощность искры при этом возрастает не менее чем в 5 раз и почти не зависит от состояния свечей и прерывателя.

Ниже приводится описание двух конструкций блоков электронного зажигания на тиристорах “БТЗ-1” и “БТЗ-2”. Они очень хорошо зарекомендовали себя во время длительной эксплуатации на автомобилях марки “Москвич”, “Волга” и “Запорожец”. Блоки тиристорного зажигания собраны из обычных деталей широкого применения.

Принципиальная схема “БТЗ-1” приведена на рис. 1. Кроме питания высоковольтным напряжением свечей зажигания, этот блок позволяет использовать в автомобиле различные маломощные бытовые приборы, рассчитанные на подключение к электросети с напряжением 220 В (электробритва, зубная щетка и пр.).

Так как стартер потребляет большой ток от аккумуляторной батареи, то в холодное время года напряжение батареи при запуске двигателя может снижаться до 6—7 В. Естественно, что в этот момент ухудшаются условия искрообразования и затрудняется пуск двигателя. Для поддержания необходимой мощности искры

в схему блока зажигания “БТЗ-2” (рис. 2) введено электромагнитное реле Р1, обмотка которого включается тем же выключателем, что и стартер. Контакты P1/1 и Р1/2 при срабатывании реле включают дополнительную повышающую обмотку (V) трансформатора Tp1. Таким образом удается поддерживать необходимую мощность искры даже при падении напряжения аккумуляторной батареи до 5—6 В. Низкочастотный фильтр Др1 и С1 в цепи питания служит для подавления радиопомех.

Оба блока электронного зажигания выполнены по конденсаторно-контактной схеме с коммутирующим тиристором. Для получения необходимой энергии искрообразования используется накопительный конденсатор С2 (СЗ), заряжающийся от высоковольтного преобразователя напряжения и разряжающийся через тиристор на первичную обмотку катушки зажигания. На вторичной обмотке катушки зажигания при этом индуцируется высокое напряжение, поступающее на свечи двигателя через распределитель. Преобразователи напряжения в обеих системах зажигания выполнены по схеме симметричного блокинг-генератора. Схема позволяет использовать для установки транзисторов 77 и Т2 общий неизолированный теплоотвод, соединенный с шасси (“общий минус”). При этом, помимо конструктивного упрощения узла преобразователя, значительно улучшается тепловой режим всего устройства и повышается надежность его работы.

Рассмотрим более подробно схему блока зажигания “БТЗ-1”, приведенную на рис. 1. Принцип работы двухтактных транзисторных генераторов с трансформаторной обратной связью достаточно хорошо известен. Транзисторы T1 и Т2 работают в ключевом режиме, коммутируя ток в первичной обмотке трансформатора Tp1. Во вторичной обмотке Tp1 при этом индуцируется высокое напряжение симметричной формы (близкой к прямоугольной). Ко вторичной обмотке Tpl подключен выпрямительный мост Д1—Д4, с которого снимается постоянное напряжение около 400 В, используемое для

зарядки конденсатора С2. Тиристор Д5 вначале закрыт. В момент замыкания контактов прерывателя, закорачивающего зажимы 3 и 7 устройства зажигания, конденсатор СЗ заряжается через диоды Д8—Д9 и резистор R7 почти до полного напряжения аккумуляторной батареи. Резистор R7 обеспечивает некоторую задержку времени заряда, устраняя воздействие “дребезга” контактов прерывателя в момент замыкания.

При размыкании контактов прерывателя (зажимы 3—7 БТЗ) конденсатор СЗ разряжается через диод Д7, управляющий электрод тиристора Д5 и резисторы R9— R10. При этом на управляющий электрод тиристора Д5 поступает положительный импульс, открывающий тиристор. Накопительный конденсатор С2, заряженный до напряжения около 400 В, разряжается через тиристор-Д5 и первичную обмотку катушки зажигания (зажимы 1 и 2 БТЗ). Одновременно открывшийся тиристор Д5 шунтирует выходную цепь преобразователя напряжения, срывая генерацию.

Отрицательный импульс, поступающий с первичной обмотки катушки зажигания через цепочку R8—Д6 после переключения тиристора Д5, мгновенно перезаряжает конденсатор СЗ. Вследствие этого длительность управляющего импульса, открывающего тиристор, не превышает 2 мкс. Это обеспечивает образование одной искры и в то же время предохраняет тиристор от многократного переключения. После разряда конденсатора С2 тиристор Д5 закрывается, возобновляется генерация в преобразователе и весь процесс повторяется.

Для облегчения запуска преобразователя напряжения на базы транзисторов 77 и Т2 задается небольшое отрицательное смещение с делителей напряжения R1, R2 и R3, R4. В целях предотвращения самопроизвольного переключения тиристора Д5 под воздействием помех, возникающих при работе преобразователя напряжения и некоторых элементов электрооборудования автомобиля (генератор, реле-регулятор, указатели поворотов и т. д.), в цепь управления тиристора введен фильтр С1 Д9. Кроме того, дополнительно на управляющий электрод тиристора Д5 задается защитное отрицательное смещение 0,5—0,7 В, снимаемое с цепочки R6 Д8.

Отличие второго преобразователя напряжения (рис. 2) от первого состоит в том, что он имеет две повышающих обмотки (I и V). С помощью контактов электромагнитного реле R1 эти обмотки могут включаться последовательно для увеличения напряжения, поступающего на вход выпрямительного моста Д1—Д4 при затрудненном запуске двигателя. Второй выпрямительный мост, собранный на диодах Д5—Д8, предназначен для питания дополнительных маломощных потребителей тока. Он может обеспечить мощность около 20 Вт, при налряжении 220—230 В. Зажим VI (“синхр.”) служит для подключения вспомогательных приборов системы контроля и регулирования работы двигателя (тахометрического стабилизатора напряжения и др.). Детали и конструкция блоков зажигания. При изготовлении устройства зажигания особое внимание следует уделить трансформатору преобразователя напряжения, от которого в основном зависит надежность работы электронного блока. Лучше всего воспользоваться для изготовления этого трансформатора тороидальным сердечником из стали марки Э330—Э340 (ХВП) или из сплава 34НКМП или 79НМ (пермаллой). В первом случае можно применить сердечник ОЛ25/40Х12.5 или подобный ему, но с несколько большим сечением. Из пермаллоевых сердечников можно рекомендовать ОЛ25/40Х6.5 (2 шт.).

Можно также использовать для изготовления этого трансформатора сердечник из обычной трансформаторной стали марки Э42 или Э43 (пластины Ш16, набор 16 мм). При подборе сердечника нужно учитывать, что сечение его магнитопровода должно быть не менее 2 см2. Каркас для катушки трансформатора делают из электрокартона, выводы обмоток закрепляют на периметре щечки каркаса. Для придания трансформатору повышенной влагостойкости, катушку после намотки пропитывают электроизоляционным лаком или компаундом (например, КП-10).

Намоточные данные трансформатора Tp1, выполненного на Ш-образном и тороидальном сердечниках, приведены в таблице.

Вначале на катушку наматывают повышающую обмотку I. Для межслоевой изоляции можно использовать кабельную бумагу. Тороидальный сердечник перед укладкой повышающей обмотки изолируют двумя-тремя слоями лакоткани или фторопласта. Затем наматывают обмотки II, III и IV. Для улучшения симметрии преобразователя и уменьшения индуктивности рассеяния трансформатора базовые и эмиттерные обмотки наматывают в два провода, располагая витки обмоток III и IV между витками обмотки II.

Число витков

Примечание

сердечник Ш16Х16

сердечник ОЛ25/40Х12Б

Намотка ведется в два провода

Трансформатор Tp1 в схеме на рис. 2 выполнен на тороидальном сердечнике типа ОЛ32/50 X 16. Основная повышающая обмотка I у него содержит 1200 витков провода ПЭЛШО 0,25; дополнительная повышающая обмотка V имеет 600 витков того же провода; эмиттерная обмотка II содержит 33 + 33 витка провода ПЭВ-2 1,0; базовые обмотки III и IV имеют по 10 витков провода ПЭЛШО 0,41. Обмотки располагаются в том же порядке, что и у Tp1 в схеме на рис. 1.

Если отсутствуют сердечники указанных марок и типоразмеров, то несложно определить пригодность имеющегося сердечника для указанных трансформаторов. Общая мощность трансформатора, используемого в преобразователе напряжения, определяется его суммарной нагрузкой. Она, в свою очередь, равна мощности, затрачиваемой на искрообразование при максимальных оборотах двигателя и максимальной мощности одного или нескольких потребителей тока, которые могут подключаться к электронному блоку. Если эти потребители тока во время движения автомобиля не используются, учитывается лишь одна из указанных нагрузок (максимальная).

Величина полезной мощности, затрачиваемая на искрообразование, зависит от числа цилиндров двигателя и скорости вращения коленчатого вала.

Для четырехтактного двигателя частота искрообразования равна:

п — число оборотов коленчатого вала в минуту; Nц — число цилиндров.

С — емкость накопительного конденсатора (фарад)
U — напряжение на накопительном конденсаторе. В нашем случае при С = 1,0 мкФ к U = 400 В

Мощность, затрачиваемая на искрообразование при 6000 об/мин:

Примерно такая же мощность расходуется при работе электробритвы (15—18 Вт). Так как обычно электронный блок используется для питания одной из указанных нагрузок, то очевидно, что максимальная мощность преобразователя может не превышать 18—20 Вт.

В том случае, когда величина индукции насыщения (Вт), имеющегося в наличии сердечника, неизвестна, прибегают к экспериментальному методу. На сердечник наматывают базовые и эмиттерные обмотки для включения в преобразователь. Их соединяют друг с другом и подключают к транзисторам T1 и Т2, как это показано на схеме на рис. 1. Намотка ведется в два провода; базовые обмотки должны иметь по 10—15 витков провода ПЭЛШО 0,25—0,31, эмиттерные — по 30—50 витков провода ПЭЛ-2 1,0. Подключив источник питания, определяют частоту генерации и ток, потребляемый устройством. Для измерения частоты лучше всего воспользоваться электронным осциллографом или частотомером. В домашних условиях можно приближенно опреде-

лить частоту генератора, сравнив высоту звука прослушиваемого при работе преобразователя с тоном музыкального инструмента, например, пианино. Обычно частота генерации не превышает 200—600 Гц (в зависимости от сердечника). Форма генерируемых колебаний должна быть по возможности близкой к прямоугольной, ток, потребляемый устройством, не должен превышать 0,5—0,6 А при напряжении источника питания 12 В. Значение Вт определяют по формуле:

где f — частота, вырабатываемая преобразователем, Гц;

Sст — сечение сердечника, см2;

Кст — коэффициент заполнения сердечника сталью;

Uэ — значение переменного напряжения на половине эмиттерной обмотки, В.

Для ленточных тороидальных сердечников величина Кст находится в пределах 0,9 - 0,95. У сердечников, набранных из обычных Ш-образных пластин, Кст= 0,75 -0,8.

Максимальная мощность, которая может быть снята с трансформатора, выполненного на данном сердечнике, определяется с помощью следующей формулы:

Величины I, Вт, Sст, Кст нам уже известны, а плотность тока в обмотках трансформатора (а) выбирают обычно в пределах 3-5 А/мм2.

nтР — коэффициент полезного действия трансформатора (для тороидальных сердечников т) = 0,9, для сердечников типа ШЛ n = 0,85 и для Ш-образных сердечников из обычной трансформаторной стали n = 0,75-0,8);

Sокна — сечение окна сердечника в см2;

Кмеди — коэффициент заполнения окна обмотками выбирают в пределах 0,2 - 0,25.

Следует указать, что оптимальная частота для преобразователя с трансформатором, выполненном на обычном сердечнике из трансформаторной стали, не должна превышать 200 - 250 Гц. В противном случае, тепловые

потери в сердечнике трансформатора резко возрастают, так что нагрев его может превысить допустимую величину. Заметим также, что при использовании сердечников с низкими электромагнитными параметрами увеличение частоты преобразователя приводит к искажению формы генерируемого напряжения и значительному снижению к. п. д. преобразователя. Для сердечников типа ШЛ оптимальная частота преобразователя лежит в пределах 250-300 Гц и для сердечников типа ОЛ — 600-700 Гц. Необходимо учитывать также, что с увеличением частоты преобразователя возрастают потери в полупроводниковых приборах и увеличивается ток потребления преобразователя.

В целях повышения надежности работы устройства желательно при расчете предусмотреть двухкратный запас по мощности у трансформатора преобразователя.

После выбора сердечника определяют намоточные данные трансформатора. Число витков половины эмит-терной обмотки (приходящихся на один транзистор) находим с помощью следующего выражения:

где Uэ =Umax —Uкэ;

Uкэ — падение напряжения на открытом транзисторе (напряжение насыщения) = 0,5 — 1 В. Если напряжение аккумуляторной батареи 12 В, Uц = 12 — 0,5=11,5 В. Остальные параметры нам также известны и могут быть использованы для расчета.

Число витков повышающей обмотки находим с помощью выражения:

Затем определяем диаметр провода для всех обмоток трансформатора преобразователя. Для этого вначале находим амплитудное значение тока коллектора транзисторов Т1 и Т2.

где Pобщ = 20 Вт;

nпр (к. п. д. преобразователя) = 0,7;

Находим действующее значение тока в эмиттерной обмотке Tp1:

Если принять средний коэффициент усиления по току (Вст) для транзисторов Т1 и Т2 равным 10, то действующее значение тока в базовой обмотке можно определить с помощью следующего соотношения:

(б — плотность тока в обмотках трансформатора 3— 5 А/мм2). Затем, задавшись выходным напряжением преобразователя (400 В) при номинальной мощности 20 Вт, определяем действующее значение тока в повышающей обмотке Tp1 в схеме рис. 1:

Таким же образом определяем действующее значение тока в дополнительной повышающей обмотке Tpl в схеме рис. 2:

Перед установкой транзисторов на теплоотводе нужно убедиться в их исправности. Желательно подобрать транзисторы с равными (или по возможности близкими) величинами обратных токов коллекторных переходов и коэффициентов усиления по току (Вст). Плоскость теплоотвода должна быть тщательно отшлифована, чтобы обеспечить надежное прилегание к поверхности транзисторов, которые закрепляют на теплоотводе с помощью четырех винтов с резьбой МЗ. Заметим, что в схемах на рис. 1 и 2 можно использовать любые мощные транзисторы (например, П213—217, П210 и пр.). Следует только учитывать допустимое напряжение между коллектором и эмиттером транзистора и мощность рассеяния. Суммарная мощность рассеяния, выделяющаяся на транзисторах 77 и Т2, находится в пределах 15 - 22 Вт. Поверхность пластинчатого охладителя (радиатора), используемого для установки транзисторов T1 и Т2, должна иметь площадь не менее 25 - 30 см2. При этом предельная температура для транзисторов преобразователя не будет превышать 60 - 70° С.

Все выпрямительные диоды перед установкой в схему блоков зажигания обязательно проверяют. При подключении диодов Д1—Д4 и Д10 к источнику постоянного напряжения 600 В ток утечки не должен превышать 10 мкА. Для проверки диодов Д5—Д8 в схеме на рис. 2 испытательное напряжение может быть снижено до 400 В.

Тиристоры Д5 и Д11 желательно проверить на напряжение и ток переключения. Для этого собирают схемы, приведенные на рис. 3,а и б. Затем постепенно увеличивая напряжение источника питания (например, с помощью автотрансформатора ЛАТР-1 или ЛАТР-2), проверяют указанные параметры тиристоров. Показания вольтметра В1 (рис. 3,а) в момент переключения тиристора Д5, скачком упадут до нуля, а миллиамперметр А1 при этом отметит резкое увеличение тока. Заметим, что тиристоры с напряжением переключения ниже 500 В в устройствах зажигания применять не следует. Точно также не рекомендуется использовать в схемах на рис. 1 и 2 тиристоры с током утечки более 1 мА (рис. 3,6). Такие тиристоры во время работы будут сильно перегреваться и быстро выйдут из строя. При проверке тиристоров нужно учесть, что у некоторых из них (например, у тиристоров типа КУ202Н) напряжение переключения может достигать 700 В, а ток утечки при рабочем напряжении 400—450 В не превышает нескольких десятков мкА.

Все постоянные резисторы, используемые в схемах на рис. 1 и 2, типа МЛТ-0,5 и МЛТ-2. В схеме на рис. 1 конденсатор С1 — электролитический, типа К.50-6, С2 — типа МБГО на номинальное напряжение 400 В, СЗ — металлобумажный, МБМ. В схеме на рис. 2 конденсатор С1 — электролитический типа К50-6, С2 — три параллельно включенных конденсатора типа К50-6 100,0X25 В, СЗ — МБГО на номинальное напряжение 600 В, С4 — металлобумажный, МБМ.

Дроссель Др1 (рис. 2) выполнен на сердечнике КД-ТД-4 (ШЛ 16X20). Обмотка его содержит 120 витков провода ПЭВ-2 1,0. Электромагнитное реле Р1 (рис. 2) типа РЭС-9 (паспорт № РС4.524.203).

Основанием блока зажигания, выполненного по схеме на рис. 1, служит дюралюминиевая пластина размером 160X70X6 мм. Транзисторы 77 и Т2 укреплены

на дюралюминиевой пластине размером 70 X 45 X 6 мм. Ее устанавливают на расстоянии 50 мм от края пластины-основания и закрепляют в вертикальном положении с помощью двух винтов с резьбой М4. На верхней торцевой части этой пластины закрепляют тремя винтами с резьбой МЗ свободный от деталей край верхней платы колончатого модуля, объединяющего почти все мелкие схемные детали блока зажигания (исключая трансформатор Tp1, накопительный конденсатор С2, транзисторы T1 и Т2 и тиристор Д5). Все детали, подлежащие монтажу в модуле, располагают в указанном на рис. 4 порядке между верхней и нижней платами модуля, установленными на расстоянии 35 мм друг от друга. Схема соединительных перемычек на платах модуля приведена на рис. 5,а и б. Отметим, что качество монтажа и надежность всех паек в модуле должны быть безупречными, так как иначе он быстро выйдет из строя при работе на автомобиле. Платы модуля могут быть выполнены способом печатного монтажа из фольгированного стеклотекстолита или гетинакса. Однако практика показала, что значительно более надежными в эксплуатации оказались объемные модули с навесными деталями, установленными на монтажных лепестках или пистонах. Для монтажа лучше всего использовать медный посеребренный провод диаметром 0,5—0,75 мм.

Закрепив объемный модуль на радиаторе транзисторов T1 и Т2, рядом с ним на пластине-основании устанавливают трансформатор Tp1. С другой стороны модуля располагают накопительный конденсатор С2 и тиристор Д5, который закрепляют на основании с помощью небольшого медного или латунного угольника, выполняющего также роль дополнительного теплоотвода для тиристора. Корпус тиристора изолируют с помощью двух слюдяных шайб толщиной 0,05—0,1 мм и проходной фторопластовой втулки, надетой на крепежный винт.

Блок зажигания, выполненный по схеме рис. 1, помещают в защитный металлический кожух размером 155X80X75 мм. Его можно изготовить из листового дюралюминия толщиной 1,5—2,0 мм или стального листа толщиной 1,0 мм. Для лучшей герметизации рекомендуется проложить резиновую окантовку между основанием и кожухом блока.

Правильно собранный блок зажигания, особенно при тщательной проверке всех устанавливаемых в схему деталей, обычно в дополнительной наладке не нуждается. Если устройство зажигания переходит в режим непрерывной генерации и не управляется контактами прерывателя, то либо в нем применен тиристор с низким напряжением переключения, либо пробит диод Д9. Иногда это явление может наблюдаться из-за недостаточной емкости конденсатора С1 и неисправности диода Д6. Если транзисторы T1 и Т2 заведомо исправны, а генерации все же нет, то для выявления причины неисправности преобразователя напряжения отключают вначале от повышающей обмотки трансформатора Tpl конденсатор С2, затем тиристор Д5 и выпрямительный мост Д1—Д4 и заменяют неисправные детали. В тех случаях, когда работа преобразователя сопровождается хриплым или шипящим звуком, проверяют исправность диодов Д1—Д4 и транзисторов T1—Т2. Причиной неисправности накопительного конденсатора С2 может явиться замыкание одного из выводов на корпус или пробой между обкладками конденсатора. В случае неисправности тиристора Д5 прежде всего нужно убедиться в целости слюдяных шайб и проходной втулки, изолирующих корпус тиристора от крепежного угольника. Если изоляция не повреждена и сам тиристор исправен, а генерации все же нет даже при отключении повышающей обмотки Tpl от всех перечисленных деталей, то причину неисправности следует искать в самом трансформаторе преобразователя напряжения (неправильное включение, обрыв или межвитковые замыкания в обмотках).

Отсутствие новообразования при размыкании контактов прерывателя указывает на то, что цепь управления тиристором разомкнута (например, при повреждении диода Д9).

При проверке устройства зажигания вне автомобиля следует обязательно соединить корпус катушки зажигания с корпусом электронного блока, так как в противном случае может произойти пробой катушки и повреждение деталей электронного блока.

При монтаже блока зажигания на автомобиле его устанавливают под капотом по возможности дальше от выпускного коллектора двигателя и закрепляют с помощью четырех винтов с резьбой М5 или М6. Температура в месте установки блока не должна превышать + 70° С, иначе надежность работы устройства зажигания снижается из-за сильного перегрева полупроводниковых приборов.

Для подключения устройства зажигания к бортсети автомобиля лучше всего воспользоваться каким-либо подходящим штепсельным разъемом (например, типа РШАБПБ-14), как это показано на рис. 6. При этом

обеспечивается быстрый переход от одного вида зажигания к другому. Для этого достаточно изменить положение вилки в гнезде разъема на 180°, как это показано на рис. 6 (“ОЗ” — обычное зажигание, “ТЗ” — тиристорное зажигание). Кроме того, вилка может служить “ключом” противоугонного устройства — если вынуть ее из гнезда, то обе системы зажигания окажутся отключенными. Не зная схемы “ключа”, запустить двигатель будет затруднительно, так как помимо указанных на рис. 6, возможно множество других вариантов расположения перемычек в вилке.

В случае использования блока зажигания на автомобилях с 6-вольтовой аккумуляторной батареей необходимо помимо пересчета намоточных данных трансформатора преобразователя напряжения также скорректировать величину сопротивления резисторов R1—R2 и R3—R4 (делители напряжения в цепях баз транзисторов Т1—Т2).

Смирнов Владимир Фёдорович

Россия, Тверская обл., г. Кимры

E-mail: [email protected]

Web-sait:

При пуске холодного двигателя перед искрообразованием свечи успевают покрыться слоем жидкого диэлектрика - маслянно-бензиновой плёнкой, загрязнённой водой, сажей, молекулами остаточных и атмосферных газов. Чем ниже температура двигателя и выше степень сжатия топливной смеси - толще плёнка. Выступы электродов свечи, имеющие малые радиусы кривизны, под слоем жидкого диэлектрика перестают влиять на снижение пробивного напряжения. Когда свечи «залило», пробоя не происходит вовсе. Это указывает на превалирующее влияние жидкого диэлектрика.

В момент искрообразования в искровом зазоре свечи катушкой зажигания (КЗ), возбуждается электрическое поле, которое неоднородно. Если его напряжённость вблизи выступов электродов с малым радиусом кривизны превышает пороговый уровень, то с этих выступов возникает самостоятельный электрический разряд, начинающийся тёмным разрядом, переходящим в коронный, ток которого должен сначала пробить плёнку жидкого диэлектрика. Немалую роль при этом играют токопроводящие загрязнения в жидком диэлектрике, создающие повышенные значения токов проводимости. В большинстве теорий : «...пробой жидких диэлектриков рассматривается как тепловой процесс, в результате которого в слое жидкого диэлектрика образуются газовые или паровые каналы... При критических значениях напряжённости электрического поля в газовых и паровых каналах начинает развиваться процесс ударной ионизации газа, завершающийся пробоем.». После этого между электродами свечи возникает искровой, затем тлеющий, а если тока достаточно, то и дуговой разряд.

На графике представлена зависимость времени пробоя жидкого диэлектрика от высокого напряжения. Как видим, при времени воздействия электрического поля более 1 мс напряжение пробоя резко уменьшается. Данное явление, обусловленное ростом числа ионных лавин, послужило стимулом к созданию систем конденсаторного многоискрового AEM зажигания.

По мере прогрева двигателя плёнка из жидкого диэлектрика начинает истончаться и деградировать до полного исчезновения - стандартная модель становится неприменимой . Двигатель переходит в нормальный рабочий режим, при этом : « Мощный тепловой толчок, вызывающий ускорение процессов, приводящих к образованию очага сгорания, можно осуществить электрическим разрядом между электродами свечи зажигания при напряжении 8–15 к В. При высоких температурах в канале или шнуре разряда (Т ≥ 10000 ) образуется очаг небольшого объёма. Это означает, что в данном объёме процессы прогрева, распада, ионизации молекул топлива и кислорода и воспламенения происходят столь быстро (через состояное плазмы), что укладываются в период разряда, длительность которого не превышает 10–20 мк с.». Таким образом, в нормальном рабочем режиме достаточна длительность разряда всего 10...20 микросекунд. Очевидно, что энергия разряда должна быть достаточной для создания первоначального очага сгорания, интенсивно инициирующего последующую цепную реакцию процесса воспламенения во всём объёме сжатой топливной смеси.

Схожие данные приводят А. Курченко и А. Синельников : « Сравнительно малая длительность искрового разряда не является недостатком описываемой системы. Как показали исследования, в исправном и правильно рассчитанном двигателе после достижения нормального теплового режима воспламенение рабочей смеси происходит в течение 10...15 мкс, и искровой разряд длительностью свыше 1 мс, имеющий место в батарейной или транзисторной системах зажигания, бесполезен и вызывает лишь эрозию электродов свечей, сокращая их срок службы. Искра длительностью 1,0 мс и более может оказаться полезной лишь при пуске двигателя на переобогащённой смеси, как горячего, так и холодного.».

Альтернативный путь. В стандартной модели на участке от 1 мс до10 мкс сокращение времени пробоя жидкого диэлектрика можно объяснить тем, что мощность коронного разряда находится в квадратичной зависимости от приложенного напряжения. К началу 90-х у меня возникла новая концепция (от лат. conceptio - понимание, система) конденсаторно-тиристорного зажигания, основанная на следующих постулатах:

    Длительный искровой разряд в 1...5 мс полезен только при пуске холодного двигателя, когда на электродах свечей образуется плёнка жидкого диэлектрика. После прогрева двигателя и исчезновения плёнки для воспламенения достаточно первых 10...20 мкс, а оставшийся излишек разряда будет безрезультатно пытаться поджечь уже сгоревшую смесь, да совершать вредоносное действие - разогревать электроды свечей, что на высоких оборотах при высокой мощности разряда может стать причиной калильного зажигания - ограничения числа оборотов.

    При 6000 об/мин = 100 об/сек двухтактного двигателя один оборот происходит за 10 мс. Легко посчитать, что искровой разряд в 1 мс будет происходить на протяжении 36°. Это превосходит угол опережения зажигания, например в 29°, занимая ещё 7° фазы быстрого сгорания. Воспламеняющая способность столь длительного искрового разряда оказывается низкой - его энергия распределена во времени, момент воспламенения точно не определён. Зажигание получается вероятностным. Исключить вероятностный фактор можно единственным способом - сконцентрировав энергию искры в разряде длительностью 10... 20 мкс.

    В конденсаторно-тиристорном электронном зажигании искрообразование происходит только в первом периоде косинусоиды затухающих колебаний ударного LC-контура (КЗ + разрядный конденсатор) - искровой разряд получается коротким, и конденсатор не успевает полностью разрядиться - возникает недобор мощности от преобразователя напряжения. Данный недостаток легко обратить в преимущество, увеличив напряжение заряда конденсатора. При этом мощность разряда возрастёт в квадратичной зависимости от напряжения, при прежней длительности.

    Ёмкость конденсатора следует увеличить, тогда частота затухающих колебаний LC-контура понизится, а длительность разряда - увеличится.

    При одинаковой потребляемой мощности альтернативная система зажигания с конденсатором повышенной ёмкости, заряженным до более высокого напряжения и с малой длительностью разряда за счёт использования низкоомной КЗ, а так же и в силу того, что искрообразование происходит лишь в течение первого периода затухающих колебаний, будет способна сконцентрировать искровой разряд.

    Неотъемлемой частью новой системы зажигания должно стать устройство зимнего пуска двигателя - когда масло загустело, и стартёр может вызвать проседание напряжения до 6 В.

Основное достоинство конденсаторно-тиристорного CDI зажигания определяется первым законом коммутации, утверждающим, что напряжение на конденсаторе не может измениться скачком. Теоретически конденсатор является источником ЭДС, имеющим нулевое внутреннее сопротивление, и способен создать в момент коммутации ток вплоть до бесконечности при нулевом сопротивлении нагрузки.

Пиковая мощность - наибольшее мгновенное значение мощности разряда. В конденсаторно-тиристорном зажигании наибольшее значение пиковой мощности приходится на самые важные - первые 10...20 мкс начала искрообразования, причём данное достоинство естественным образом следует из его принципа действия. По мере разряда конденсатора мгновенная мощность уменьшается. Пиковая мощность разряда - наиважнейшая для высокооборотных и обычных двигателей характеристика зажигания в нормальном рабочем режиме.

Импульсная мощность (мощность в импульсе) - среднее значение мощности за время длительности импульса. Данная характеристика важна в режиме запуска холодного двигателя для пробоя жидкого диэлектрика.

В момент искрообразования открывается тиристор VS и закорачивает выход преобразователя, останавливая его работу. Заряженный конденсатор С5 подключается к первичной обмотке КЗ, образуя с её индуктивностью LC-контур ударного возбуждения, в котором на частоте резонанса зарядом конденсатора С5 возбуждаются затухающие косинусоидальные колебания. В повышающей обмотке КЗ эти колебания, частотой 2...10 кГц (зависит от КЗ), трансформируются в 100...400 раз большее напряжение, и трамблёром направляются свече того цилиндра, где должно произойти воспламенение сжатой топливно-воздушной смеси.

В свече возникает искровой разряд. Энергия электрического поля конденсатора С5 тратится на воспламенение топливной смеси и преобразуется в энергию магнитного поля КЗ. В момент, когда конденсатор C5 полностью разрядится и напряжение на нём уменьшится до нуля ток в цепи достигнет наибольшего значения. Ввиду полного разряда конденсатора ток в цепи начинает уменьшаться, но не прекращается, так как согласно второму закону коммутации, ЭДС самоиндукции КЗ меняет знак и поддерживает прежнее значение тока. Источником энергии становится энергия магнитного поля КЗ, а конденсатор становится нагрузкой.

Ток, проходя через разряженный конденсатор, начинает его заряжать. Поскольку направление тока осталось прежним, тиристор остаётся открытым, но полярность напряжения на конденсаторе меняется. По мере заряда конденсатора напряжение на нём возрастает, а ток в цепи убывает. Энергия магнитного поля КЗ уменьшается - она расходуется на поддержание искрового разряда и на заряд конденсатора.

Когда ток в цепи станет меньше тока удержания, тиристор выключится. К этому моменту почти вся энергия магнитного поля, за минусом израсходованной на поддержание искрового разряда, запасается в электрическом поле конденсатора, напряжение на нём достигает максимума, но в противоположной полярности.

Снова начинается разряд конденсатора, но направление разрядного тока меняется на противоположное. Теперь цепь LC-контура замыкает динамическое сопротивление открытых диодов VD4...VD7 моста - преобразователь всё ещё не работает. Когда конденсатор разрядится, динамическое сопротивление диодов моста увеличится, цепь LC-контура окончательно разорвётся - искрообразование закончится. Преобразователь запустится на рабочей частоте (18...32 кГц) и полностью зарядит ёмкость С5, после чего потребление тока уменьшится - преобразователь перейдёт в режим холостого хода до следующего искрообразования.

Таким образом, в настоящем зажигании искрообразование происходит на протяжении первого периода колебаний LC-контура, а тиристор открыт только в первую 1/2 данного периода.

Устройство зимнего пуска двигателя - диод VD1 и конденсатор С1. При пуске холодного двигателя зимой стартёр может вызвать проседание напряжения аккумулятора до 6 В, напряжение на ёмкости С1 становится выше входного, диод VD1 закрывается, и начинается автономное питание устройства зарядом ёмкости С1. Величина ёмкости С1 должна быть десятки тысяч микрофарад, однако практика показала, что вполне достаточно 4700 мкФ.

Транзисторный преобразователь напряжения - модернизированная схема Ройера работает на частоте около 32 кГц и гарантированно успевает зарядить при 6000 об/мин конденсатор C5 ёмкостью 2 мкФ до напряжения около 600 В, потребляя при этом ток не более 2,5 А. На низких оборотах напряжение ещё выше, а ток потребления около 0,7 А. Транзисторам необходимы радиаторы - алюминиевые пластины 80х80х3 мм, которые склеены торцами через изолятор цианоакриловым клеем и размещены в корпусе с отверстиями так, что для охлаждения воздухом открыты все поверхности. Схемотехника преобразователя с одной базовой обмоткой , коммутируемой диодами, выгодно отличается тем, что открытый коммутирующий диод работает как стабистор, предотвращая зенеровский пробой обратносмещённого перехода база-эмиттер закрытого транзистора, что повышает КПД. В схеме реализован нелинейный базовый резистор на лампе накаливания EL. В холодном состоянии сопротивление её нити до десяти раз меньше, чем в горячем. При начальном пуске величина базового тока выше, чем в рабочем режиме, и запуск характеризуется быстрым нарастанием неустойчивости, заканчивающейся автогенерацией прямоугольных колебаний. Лампа накаливания светится в 1/2 накала и является индикатором: работает преобразователь или нет. Зажигание устойчиво работает и на более 7000 об/мин, однако напряжение на конденсаторе начинает cнижаться.

Повышенное напряжение обусловило выбор тиристора классом не менее 9 (900 В). Запуск тиристора осуществляется разрядом ёмкости С2 через негатрон - фототранзистор оптрона U1, работающий в лавинном режиме . Параметры зарядной цепи R4, VD8 выбраны так, чтобы ограничение заряда ёмкости С2 наступало выше 8000 об/мин. VD8 - стабилизатор напряжения 51 В, а R4 - источник тока. Данная схемотехника позволяет импульсно запускать любые тиристоры, обладает исключительно малой задержкой запуска, хорошей температурной стабильностью, высокой чувствительностью к запуску, оптическим разделением цепей входа и выхода, причём - сверхэкономно.

Универсальность настоящего конденсаторно-тиристорного CDI электронного зажигания - возможность работы как от прерывателя, так и от автомобильного датчика Холла. При размыкании контактов прерывателя времязадающая цепь R3, С4, R6 формирует токовый импульс для светодиода оптрона U1, заряжающий ёмкость С4. При замыкании контактов ёмкость С4 разряжается через сопротивление резистора R6 - формируется защитный временной интервал от «дребезга». У автомобильного датчика Холла токовый импульс имеет отрицательную полярность, поэтому цепь: диод VD9 + светодиод необходимо подключить так, как изображено на схеме перемычками зелёного цвета.

Необязательное тестирование осциллографом. Необходимо изготовить делитель напряжения 1/100 из 2 Вт резистора - 1 МОм и резистора 0,25 Вт - 10 кОм. Вход делителя подключают параллельно тиристору VS, а выход - к открытому входу осциллографа в режиме непрерывной развёртки. Вместо прерывателя подключают простейший самодельный тест-генератор прямоугольных импульсов с регулируемой частотой от единиц до 250-300 Гц, имитирующий прерыватель с помощью транзисторного ключа. Тест-генератору необходим металлический корпус-экран без щелей и короткий экранированный провод - выход. Внутри корпуса - должен быть RC-фильтр питания.

К зажиганию подключить КЗ и свечу. Включаем осциллограф. При выключенном тест-генераторе подаём питание 13, 8 В на зажигание. Смотрим на нить лампы EL, если светится - преобразователь работает. Осциллограф должен показывать напряжение более 600 В. Теперь включаем тест-генератор. В свече должны появиться искровые разряды. Вращая ручку регулятора частоты тест-генератора надо убедиться, что до частоты 200 Гц напряжение на тиристоре (конденсаторе С5) перед искрообразованием имеет вершину на уровне более 600 В. При дальнейшем увеличении частоты длительность вершины будет уменьшаться, затем импульсы станут напоминать пилу - напряжение на ёмкости С5 станет уменьшаться.

Теперь вместо свечи надо создать воздушный разрядный промежуток миллиметров в 10 и проверить на пробой во всём диапазоне частот. Постепенно зазор надо увеличивать до тех пор, пока не прекратится пробой. Так можно узнать длину искрового разряда на воздухе. Хорошую КЗ во время таких испытаний не пробъёт, а плохой - туда и дорога. Запомните производителя и в дальнейшем игнорируйте его КЗ. Длина искрового разряда на воздухе раз в 11 превышает его длину в сжатой топливной смеси, причём чем выше степень сжатия - тем в большее. Таким образом можно оценить максимум зазора в свече, который можно установить.

Ток через тиристор во время искрообразования. Осциллографом измеряем период Т колебаний LC-контура ударного возбуждения. Характеристическое сопротивление LC-контура определяется выражением: ρ = Т/2πС. Величину тока находим с помощью закона Ома: I = U/ρ = U2πC/T, где U = 600 В, С - ёмкость конденсатора С5 = 2мкФ, а 2π = 6,28.

При Т = 100 мкс - ток около 75 А. На частоте искрообразования 200 Гц время открытого состояния тиристора как минимум в 25 раз меньше закрытого, что даёт средний ток всего 3 А. Тиристор Т132-50-9-4 имеет допустимый средний ток в открытом состоянии 50 А, что обеспечивает многократную параметрическую избыточность и надёжность.

Настоящее конденсаторно-тиристорное CDI зажигания - разработка 90-х. Неоднократно оно демонстрировало чудеса - после установки на дымящий автомобиль, не только исчезал дым, но и показатель СО оказывался ниже нормы. Устройство обладает высокой надёжностью, так как каждый из его компонентов используется в комфортной для него области безопасной работы.

Из-за высокого уровня импульсных помех в мировом автопроме сложилось негативное отношение к конденсаторно-тиристорным CDI системам электронного зажигания. Их используют исключительно на гоночных автомобилях или на некоторых лодочных моторах.

Обязательно соблюдайте правила техники электробезопасности, так как в устройстве имеются крайне опасные напряжения!

Литература

    Электротехнический справочник. В 3-х т. Т. 1. Общие вопросы. Электротехнические материалы/ Под общ. Ред. Профессоров МЭИ В. Г. Герасимова, П. Г. Грудинского, Л. А. Жукова и др. - 6-е изд., испр. и доп. - М.; Энергия, 1980. - 520 с., ил.

    Двигатели внутреннего сгорания: Теория поршневых и комбинированных двигателей. Учебник для втузов по специальности "Двигатели внутреннего сгорания"/ Д. Н. Вырубов, Н. А. Иващенко, В. И. Ивин и др.; Под ред А. С. Орлина, М. Г. Круглова. - 4-е изд., перераб. И доп. - М.: Машиностроение, 1983. - 372 с., ил.

Приветствую уважаемых коллег-радиолюбителей. Многие имели дело с очень простыми, и потому очень не надёжными системами зажигания в мотоциклах, мопедах, лодочных моторах и подобных изделиях прошлого века. Был и у меня мопед. Искра у него пропадала так часто и по стольким разным причинам, что это очень надоедало. Вы, вероятно, и сами видели постоянно встречающихся на дорогах мотолюбителей без искры, которые пытаются завестись с разбега, с горки, с толкача... В общем пришлось придумывать свою систему зажигания. Требования были такие:

  • должна быть максимально проста, но не в ущерб функциональности;
  • минимум переделок в месте установки;
  • питание безаккумуляторное;
  • улучшение надёжности и мощности искры.

Всё это, или почти всё, было реализовано и прошло многолетнюю проверку. Остался доволен и хочу предложить собрать такую схему вам, у кого остались двигатели из прошлого века. Но и современные двигатели можно снабдить этой системой, если собственная пришла в негодность, а покупать новую дорого. Не подведёт!

С новой системой электронного зажигания искра увеличилась на порядок, ранее в солнечный день её и не увидишь, после зазор свечи был увеличен с 0.5 до ~1 мм и искра бело-голубая (на испытательном стенде в лабораторных условиях искрой поджигалась даже тонкая киповская бумага). Всякие мелкие загрязнения свечи стали не существенными, так как система тиристорная. Заводиться стал мопед не то что с пол - с четверть оборота. Многие старые свечи снова можно было вытащив из «мусорного ведра» ставить в работу.

Был убран вечно «плюющийся» и загаживавший радиатор декомпрессор, ведь заглушить мотор теперь можно простым выключателем или кнопкой. Был отключён вечно требующий ухода прерыватель - раз настроив, ухода не требует никакого.

Схема модуля зажигания

Монтажная схема модуля

Печатные платы для сборки

Для малого потребления тока была выбрана КМОПовская микросхема КР561ЛЕ5 и стабилизатор на светодиодах. КР561ЛЕ5 работает начиная с 3 В и с очень малым (15 uA) током, что является важным для данной схемы.

Компаратор на элементах: DD1.1, DD1.2, R1, R2 служит для более чёткого реагирования на уровень нарастающего напряжения после индукционного датчика и для устранения реакции на помехи. Формирователь импульса запуска на элементах: DD1.3, DD1.4, R3, C1 нужен для формирования нужной длительности импульса, для хорошей работы импульсного трансформатора, чёткого отпирания тиристора и для всё той же экономии тока питания схемы.

Импульсный трансформатор Т1 служит также для развязки от высоковольтной части схемы. Ключ выполнен на транзисторной сборке К1014КТ1А - он формирует хороший импульс, с крутыми фронтами и достаточным током в первичной обмотке импульсного трансформатора, что обеспечивает, в свою очередь, надёжное отпирание тиристора. Импульсный трансформатор изготовлен на ферритовом кольце 2000НМ / К 10*6*5 с обмотками по 60-80 витков провода ПЕВ или ПЕЛ 0.1 - 0.12 мм.

Стабилизатор напряжения на светодиодах был выбран по причине очень малого начального тока стабилизации, что ещё вносит свой вклад в экономию тока потребления схемы, но, при этом, чётко стабилизирует напряжение на микросхеме на уровне 9 В (1.5 В один светодиод) и ещё служит дополнительно световым индикатором наличия напряжения с магнеты, в схеме.

Стабилитроны VD13, VD14 служат для ограничения напряжения и включаются в работу только при очень больших оборотах двигателя, когда экономия питания не очень важна. Желательно намотать такие катушки в магнете, чтобы эти стабилитроны включались только на самой верхушке, только на самом максимально возможном напряжении (в последней модификации стабилитроны не устанавливались, т.к. напряжение итак никогда не превышало 200 В). Две ёмкости: С4 и С5 для увеличения мощности искры, в принципе схема может и на одной работать.

Важно! Диод VD10 (КД411АМ) подбирался по импульсным характеристикам, другие очень грелись, не выполняли в полной мере свою функцию защиты от обратного выброса. К тому же через него идёт обратная полуволна колебания в катушке зажигания, что увеличивает длительность искры почти в два раза.

Ещё эта схема показала нетребовательность к катушкам зажигания - ставились любые какие были под рукой и все работали безупречно (на разные напряжения, под разные системы зажигания - прерывательные, на транзисторном ключе).

Резистор R6 предназначен для ограничения тока тиристора и для его чёткого запирания. Его подбирают в зависимости от используемого тиристора так, чтобы ток через него не мог превысить максимальный для тиристора и, самое главное, чтобы тиристор успевал запираться после разряда ёмкостей С4, С5.

Мостики VD11, VD12 выбираются по максимальному напряжению с катушек магнеты.

Катушек, заряжающих ёмкости для высоковольтного разряда, две (это решение также гораздо экономичнее и эффективнее чем преобразователь напряжений). Такое решение пришло потому, что катушки имеют разное индуктивное сопротивление и их индуктивные сопротивления зависят от частоты вращения магнитов, т.е. и от частоты вращения вала. Эти катушки должны содержать разное количество витков, тогда на малых оборотах будет работать в основном катушка с большим количеством витков, а на больших с малым, так как увеличение наводимого напряжения с увеличением оборотов будет падать на увеличивающемся индуктивном сопротивлении катушки с большим количеством витков, а на катушке с малым количеством витков напряжение растёт быстрее, чем её индуктивное сопротивление. Таким образом всё друг друга компенсирует и напряжение заряда ёмкостей в определённой степени стабилизируется.

Обмотка для зажигания в мопеде «Верховина-6» перематывается так:

  1. вначале замеряется напряжение на экране осциллоскопа с этой обмотки. Осциллоскоп нужен для более точного определения максимального амплитудного напряжение на обмотке, так как обмотку близко от максимума напряжения закорачивает прерыватель и тестер покажет некое заниженное действующее значение напряжение. Но ёмкости будут заряжаться до максимального амплитудного значения напряжения, да ещё и полным (без прерывателя) периодом.
  2. после, сматывая обмотку, надо посчитать количество её витков.
  3. разделив максимальное амплитудное напряжение обмотки на число её витков получаем сколько вольт даёт один виток (вольт/виток).
  4. разделив необходимые для нашей схемы напряжения на полученный (вольт/виток) получим количество витков, которые необходимо будет намотать для каждого из нужных напряжений.
  5. наматываем и выводим на клемник. Обмотка освещения остаётся прежней.

Используемые в схеме детали

Микросхема КР561ЛЕ5 (элементы 2 ИЛИ НЕ); интегральный ключ на МОП-транзисторе К1014КТ1А; тиристор ТС112-10-4; выпрямительные мосты КЦ405 (А,Б,В,Г), КЦ407А; диоды импульсные КД 522, КД411АМ (очень хороший диод, другие греются или работают гораздо хуже); светодиоды АЛ307 или другие; конденсаторы С4,С5 - К73-17/250-400В, остальные любого типа; резисторы МЛТ. Файлы проекта сложены сюда . Схема и описание - ПНП .

Обсудить статью СХЕМА БЛОКА ЭЛЕКТРОННОГО ЗАЖИГАНИЯ

КОНДЕНСАТОРНАЯ (ТИРИСТОРНАЯ) СИСТЕМА ЗАЖИГАНИЯ
________________________________________

По принципу действия эта система относится к устройствам, в которых энергия, расходуемая на искро-образование, накапливается (в отличие от батарейной и транзисторной систем) не в магнитном поле катушки зажигания, а в электрическом поле специального накопительного конденсатора, который с помощью коммутирующего элемента (тиристора) в определенные моменты подключается к ней.

Принципиальная электрическая схема конденсатор-нон (тиристорной) системы зажигания с непрерывным накоплением энергии (рис. 33) в принципе мало чем отличается от схемы, впервые опубликованной в одном из американских журналов, а также в отечественных изданиях. Основное ее отличие состоит в более тщательном подборе элементов, что значительно повышает эксплуатационную надежность и уменьшает габариты устройства.
В частности, в схеме применены менее мощные транзисторы (П216), изменены номиналы резисторов в их базовых цепях, уменьшены габариты трансформатора, в выпрямителе использованы диоды с обратным напряжением 600 В, применен один мощный тиристор (вместо двух) на большее рабочее напряжение, введены переключатели Bl, B2.
Все это позволило разработать более компактную конструкцию, которая находилась в опытной эксплуатации на автомобиле в течение ряда лет. Схема сохраняет работоспособность при колебаниях питающего напряжения в пределах 9-15 В.
Ее можно использовать на любом автомобиле с напряжением питания электрооборудования +12 В. По сравнению со стандартной системой зажигания она не требует никаких дополнительных приборов, кроме электронного блока.




Схема может работать с катушками зажигания типа Б1, Б7, Б7А, Б13, Б21, Б21А, Б117 (автомобиль "Жигули": ВАЗ-2101, 2102, 2103, 21011). Рабочий диапазон температур от -40 до +65° С. Система зажигания состоит из электронного блока ЭБ, катушки зажигания КЗ с вариатором (или без него), контактов прерывателя Пр.
Основой системы является электронный блок, преобразующий сигналы прерывателя в импульсы высокого напряжения с амплитудой 400 В, которые затем поступают на обычную катушку зажигания, повышающую выходное напряжение до 25-30 кВ.
Электронный блок состоит из преобразователя напряжения на транзисторах 77, Т2 и трансформаторе Тр1; высоковольтного выпрямителя на диодах Д1-Д4;
накопительного конденсатора С2; бесконтактного ти-ристорного коммутатора Д6; схемы управления тири-стором Д6, выполненной на конденсаторе СЗ, диодах Д7-Д9 и резисторах R5, R7-R9; двух переключателей Bl и B2, предназначенных для быстрого перехода в случае необходимости с электронного зажигания (положение 1) на обычное батарейное (положение 2) и наоборот.
Преобразователь напряжения выполнен по схеме симметричного мультивибратора с индуктивной связью на мощных германиевых транзисторах 77, Т2 с нагрузкой в цепи эмиттера, в качестве которой используется первичная обмотка трансформатора Тр1. Несмотря на то что транзисторы 77, Т2 работают в ключевом режиме (режиме насыщения), на них выделяется значительная мощность в моменты переключения из проводящего состояния в непроводящее и наоборот.
Коллекторные цепи транзисторов Т1, Т2 можно соединить с корпусом прибора. Это позволяет крепить транзисторы непосредственно без изоляционной прокладки на корпусе электронного блока, используя последний в качестве радиатора.



Транзисторы 77, Т2 рассчитаны на кратковременные (около 1 мс) четырехкратные перегрузки по току, возникающие в каждом цикле искрообразования при срыве генерации преобразователя в моменты включения тиристора Д6. Резисторы Rl, R2 служат для подачи начального смещения, а резисторы R3, R4 ограничивают ток базы соответствующего транзистора.
трансформатор Тр1 рассчитан так, что коллекторный ток транзисторов 77, Т2 вызывает насыщение его сердечника. Это явление улучшает КПД преобразователя, а также способствует повышению устойчивости его работы в различных условиях эксплуатации авто мобпля. Частота генерации преобразователя - 800 Гц
Выпрямитель преобразователя выполнен по мостовой схеме на силовых диодах Д237В, получает питание от вторичной обмотки Тр1 и рассчитан на максимальное выходное напряжение 500 В. Он работает на нагрузку, состоящую из накопительного конденсатора С2 с малыми токами утечки и резистора R6, предназначенного для разряда конденсатора С2 при выключении питания электронного блока.
Энергия, накопленная в конденсаторе С2, передается в первичную обмотку катушки зажигания при включении тиристора Д6, выполняющего функцию электронного коммутатора. Момент включения тиристора Д6 определяется моментом размыкания контактов прерывателя.
При замкнутых контактах прерывателя тиристор Д6 надежно закрыт отрицательным смещением - 0,7В, образующимся при протекании тока в прямом направлении через диод Д7. Резистор R5 ограничивает величину тока через диод Д7 и "привязывает" управляющий электрод тиристора к нулевому потенциалу. Накопительный конденсатор С2 заряжен в этот момент от выпрямителя до высокого потенциала UВ (см. табл. 4), который зависит от напряжения питающей сети автомобиля.


Когда контакты прерывателя замкнуты, через них протекает ток, определяемый прямым сопротивлением диода Д5 и величиной резисторов R9, RIO. В нашем случае ток равен примерно 150 мА, а конденсатор СЗ через диод Д7 и резистор R7 заряжен практически до напряжения +12 В источника питания *.
Как только контакты прерывателя разомкнутся, напряжение, до которого заряжен конденсатор СЗ, прикладывается (в положительной полярности) через диод Д8 и резисторы R9. RIO к управляющему электроду тн-ристора Д6". Тиристор открывается, и конденсатор С2 разряжается на первичную обмотку катушки зажигания, что сопровождается возникновением высоковольтного импульса U2макс во вторичной обмотке.
Цепь R8Д9 пропускает отрицательный импульс от первичной обмотки катушки зажигания, который полностью перезаряжает конденсатор СЗ в противоположной полярности, как только открывается тиристор Д6. Этим мгновенно снимается положительное смещение с управляющего электрода тиристора Д6 и исключается возможность многократного переключения последнего, когда контакты прерывателя еще разомкнуты.
Таким образом, благодаря цепочке Р8Д9 положительное напряжение на управляющий электрод тиристора Д6 подается в виде короткого импульса длительностью около 2-3 мкс, что обеспечивает образование лишь одной искры в момент размыкания контактов. Диод Д5 и конденсатор С/ образуют развязывающий фильтр низкой частоты, предотвращающий проникновение помех в цепь питания.

*Постоянная времени заряда конденсатора СЗ выбрана рав-ной 120 мс, чтобы избежать возникновения дополнительного запускающего импульса из-за "дребезга" контактов прерывателя после их замыкания.

В табл. 5 приведена экспериментальная зависимость тока, потребляемого электронным блоком, от числа оборотов коленчатого вала для четырехцилиндрового двигателя при напряжении источника питания 12 В.
Из таблицы можно сделать вывод о принципиальном отличии этой системы (в смысле потребления тока от источника питания) от батарейной и транзисторной систем зажигания.
В самом деле, в батарейной системе зажигания (если вал двигателя неподвижен, а контакты прерывателя замкнуты) ток через первичную обмотку катушки зажигания достигает максимального значения и равен примерно 4 А (потребляемая мощность около 50 Вт). В этих же условиях для транзисторной системы зажигания ток первичной обмотки равен примерно 7 А (потребляемая мощность около 80 Вт).
При увеличении оборотов двигателя ток разрыва уменьшается и среднее значение тока, потребляемого от источника, снижается до 1,5-2 А и 3-4 А соответственно для батарейной и транзисторной систем.
В конденсаторной же системе при неработающем двигателе и любом положении контактов прерывателя потребляемый ток от источника питания равен примерно 0,5 А (потребляемая мощность около 6 Вт). Этот ток увеличивается прямо пропорционально скорости вращения вала, достигая при 6000 об/мин примерно 2 А (потребляемая мощность около 25 Вт).
Помимо очевидной экономичности, конденсаторная система имеет некоторые дополнительные преимущества.
Одно из них состоит в следующем. Если в автомобиле с батарейным (или транзисторным) зажиганием забыли выключить замок зажигания, а контакты прерывателя при этом случайно окажутся замкнутыми, то может выйти из строя катушка зажигания, так как через нее длительное время будет протекать значительный ток. В конденсаторной системе такая ситуация не вызывает никаких вредных последствий, не считая некоторой разрядки аккумуляторной батареи током 0,5-0,6 А.
Другое преимущество заключается в том, что конденсаторная система обеспечивает уверенный запуск двигателя рукояткой при сильно разряженной аккумуляторной батарее, поскольку она потребляет ничтожный ток при неподвижном вале двигателя. Запустить двигатель в таких же условиях при батарейной (или транзисторной) системе зажигания не представляется возможным.
На рис. 34 приведена правая часть принципиальной схемы электронного блока конденсаторной системы, предназначенной специально для автомобиля "Жигули" всех моделей, которая отличается коммутацией катушки зажигания при переводе системы в режим обычного батарейного зажигания (положение 2). Это обусловлено тем, что система зажигания автомобиля "Жигули" не имеет вариатора в первичной цепи катушки зажигания.
Конденсатор С4 на схемах рис. 33, 34 прн установке переключателей В1 и В2 в положение 2 оказывается включенным параллельно контактам прерывателя и выполняет роль искрогасительного конденсатора. Стандартный же конденсатор при установке электронного блока должен быть отключен.

Конструктивно электронный блок выполнен в виде прибора, имеющего габариты 100Х100Х50 мм. Корпус прибора изготовлен из листового материала (сплав АМЦАМ) толщиной 2-3 мм.
Внутри корпуса размещается трансформатор Тр1, конденсаторы С2, С4 и печатная плата, показанная на рис. 35 в натуральную величину. Транзисторы T1, T2 укрепляются винтами МЗ на боковой стенке снаружи корпуса. Там же крепятся переключатели В1 и В2. Резисторы R1-R4 монтируются непосредственно между выводами транзисторов и трансформатора Тр1. Для подключения внешних цепей из корпуса прибора через изоляционную втулку выводится пучок проводов, длина которых зависит от места установки прибора под капотом автомобиля. Прибор крепится жестко (без амортизаторов); должен обеспечиваться хороший тепловой контакт с элементами конструкции автомобиля.
При необходимости транзпсторы П216 можно заменить на П216А, П217А, П217В.
Все резисторы - типа МЛТ или МТ; конденсаторы С2 и С4 - типа МБГО соответственно на рабочее напряжение 500 и 400 В; конденсатор С1 - типа К50-6, а конденсатор СЗ - типа МБМ на рабочее напряжение 160 В. Переключатели В1. В2 - типа ТП2-1 или МТ-2.
Трансформатор Тр1 - тороидального типа, выполнен на сердечнике ОЛ 20/32-10 мм, сечение железа- 0,6 см^2. Обмотки трансформатора имеют следующие данные: w1=1700 витков провода ПЭВ-2 0,18; w2, w3 - по 15 витков ПЭВ-2 0,31, мотать одновременно в два провода; w4, w5 - по 50 витков провода ПЭВ-2 0,78. Намотка трансформатора ведется в одну сторону, последовательность намотки соответствует нумерации обмоток. Обмотки изолируют друг от друга слоем кабельной бумаги. После намотки трансформатор полезно про питать лаком для уменьшения гигроскопичности и увеличения электрической прочности.
Несколько практических рекомендаций. Используя конденсаторную систему зажигания, следует увеличить зазоры свечей зажигания примерно до 1 мм независимо от модели автомобиля. Кроме того, при проведении профилактических работ не надо обильно пропитывать маслом фильц кулачка прерывателя во избежание замасливания его контактов. Выполнение этого условия является гарантией надежной работы системы зажигания.
Установку (или проверку) угла опережения зажигания производят в положении 2 переключателей В1, В2 электронного блока с помощью лампы накаливания, включенной параллельно контактам прерывателя, по обычной методике. После окончания работы переключатели вновь переводят в положение 1 ("электронное зажигание"), а октан-корректором устанавливают опережение зажигания на 1° позже, чем рекомендовано заводом-изготовителем для батарейного зажигания. Объясняется это тем, что выработка искры при электронном зажигании происходит чуть раньше (в самом начале размыкания контактов прерывателя), чем при батарейном. Окончательную корректировку опережения зажигания производят на ходу автомобиля.
Наладка блока сводится к проверке генерации преобразователя напряжения (при работе преобразователя слышен негромкий писк с частотой 700-800 Гц) и контролю потребления тока от источника питания (см. табл. 5) в зависимости от числа оборотов двигателя.
При использовании заведомо исправных деталей и правильной распайке концов трансформатора Тр1 электронный блок начинает работать сразу при установке его на автомобиль и соединении с приборами электрооборудования в соответствии с принципиальными схемами рис. 33, 34.
Следует заметить, что такая система"электронного зажигания установлена на автомобиле "Жигули" ВАЗ-2101, который эксплуатируется круглогодично. Об эффективности ее работы можно судить хотя бы по следующим данным. При пробеге свыше 100 тыс. км не было отмечено ни одного отказа системы зажигания, а контакты прерывателя выглядят как новые. За все время работы системы потребовалось лишь один раз (через 50 тыс. км) проверить правильность установки зажигания и зазор между контактами прерывателя. Незначительное изменение зазора было вызвано износом текстолитовой подушечки прерывателя.

Предупреждение. Тахометр автомобиля "Жигули" ВАЗ-2103 при использовании конденсаторной (или транзисторной) системы зажигания работать не будет, так как амплитуда импульсов, поступающих на него с контактов прерывателя, в этом случае равна 12 В.

В тиристорных системах зажигания энергия для искрового разряда накапливается в конденсаторе, поэтому их часто называют конденсаторными. В момент искрообразования конденсатор разряжается через тиристор и первичную обмотку катушки зажигания, и во вторичной обмотке индуктируется высокое напряжение.

Энергия Wc, накапливаемая в конденсаторе С1, зависит от его емкости и напряжения в квадрате (U2), подводимого к конденсатору:Wc = OU2/2.

Поэтому конденсатор заряжают до напряжения 300 + 400 В от бортовой сети 12 + 14 В, или другого источника повышенного напряжения через преобразователь напряжения П и выпрямитель В (смотри рисунок).

Время полного заряда накопительного конденсатора значительно меньше времени накопления энергии в индуктивности и может быть доведено до 2 мс. Оно зависит от мощности и выходного сопротивления преобразователя и емкости накопительного конденсатора. Время заряда конденсатора рассчитывается так, чтобы к моменту подачи следующей искры он был полностью заряжен. Это обеспечивает энергию искры постоянной во всем диапазоне частот искрообразования. Тиристоры менее чувствительны к повышенному напряжению, чем транзисторы. Тиристорные системы зажигания могут работать с катушкой контактной системы батарейного зажигания, максимальная величина ЭДС самоиндукции которой примерно соответствует зарядному напряжению накопительного конденсатора. Конденсатор прерывателя не влияет на работу тиристорной системы. Это позволяет в случае отказа ее быстро перейти на батарейную систему.

Высокое напряжение тиристорной системы зажигания нарастает примерно в десять раз быстрее, чем в батарейной и контактно - транзисторной системах. Поэтому оно обеспечивает пробой искрового промежутка в свечах с загрязненными, покрытыми нагаром изоляторами. Но продолжительность разряда в искровом промежутке значительно меньше (около 300 мке), чем в системах с накоплением энергии в индуктивности (около 1 мс), так как частота колебаний контура накопительный конденсатор - первичная обмотка в тиристорной системе значительно выше.

Тиристорные системы зажигания по принципу действия делят на две группы: с импульсным непрерывным (многоимпульсным) и одноимпульсным накоплением энергии в емкости.

В импульсных системах конденсатор заряжается одним импульсом прямоугольной формы до конечного напряжения, а затем наступает пауза до момента его разряда В схемах с непрерывным накоплением энергии конденсатор заряжается многочисленными прерывистыми импульсами напряжения.

Системы с импульсным накоплением позволяют простыми средствами стабилизировать напряжение заряда накопительного конденсатора, т. е. сделать его независящим от изменений напряжения питания и других дестабилизирующих факторов. Однако при малой пусковой частоте вращения вала двигателя в этих системах, вследствие увеличения времени паузы, накопительный конденсатор к моменту искрообразования успевает несколько разрядиться, и напряжение искрообразования уменьшается. Это налагает жесткие требования на значения токов утечки в элементах вторичной цепи - тиристоре, накопительном конденсаторе, выпрямительном диоде и является недостатком систем с импульсным накоплением.

Системы с непрерывным накоплением энергии свободны от указанного недостатка. Эти системы практически нечувствительны к утечкам в элементах вторичной цепи и обеспечивают независимость напряжения искрообразования от частоты вращения вала двигателя.

Принципиальная схема тиристорной системы зажигания с непрерывным накоплением энергии приведена на рисунке №2

Она включает в себя преобразователь П постоянного напряжения 12 ¦ 15 В в переменное 300 + 400 В с частотой около 500 Гц. выпрямитель переменного напряжения В, тиристор VD5, накопительный конденсатор С1, блок управления и катушку зажигания КЗ.

В качестве преобразователя напряжения может быть использован приведенный на схеме двухтактный преобразователь с самовозбуждением к трансформаторной связью, собранный по схеме с общим коллектором на транзисторах VTI, VT2, резисторах R1, R2, R3, R4 и трансформатоpeTI.

При включении зажигания напряжение бортовой сети подводится к средней точке обмотки трансформатора и коллекторам транзисторов. Возникает ток в двух параллельных цепях, который течет от средней точки трансформатора через его верхнюю половину, резисторы Rl, R3, транзистор VT1 и через нижнюю половину трансформатора, резисторы R2, R4, транзистор VT2. Вследствие разброса параметров транзисторов и резисторов тЪк в одной половине трансформатора (допустим, верхней) пойдет несколько больший, чем во второй (нижней). Это вызывает ускоренное отпирание одного транзистора (VT1) и запирание второго (VT2). В таком состоянии транзисторы находятся, пока магнитный поток в сердечнике трансформатора не достигнет насыщения. Происходящее при этом резкое замедление нарастания тока вызывает в обмотках трансформатора ЭДС противоположной полярности, которая переключает транзисторы: запирает VT1 и отпирает VT2. Транзисторы переключаются с частотой около 500 Гц, меняя направление тока в обмотке трансформатора, и на выходе трансформатора появляется переменное напряжение порядка 350 ¦ 400 В. Двухполупериодный выпрямитель на диодах VD2 + VD4 преобразует переменное напряжение в постоянное, которым заряжается конденсатор С1. В момент искрообразования по сигналу контактного или бесконтактного датчика с блока управления подается положительный импульс на управляющий электрод тиристора VD5. Тиристор открывается и конденсатор разряжается через первичную обмотку катушки зажигания, а во вторичной обмотке индуктируется высокое напряжение.

Рассмотрим подробнее основные этапы работы системы: заряд накопительного конденсатора после переключения ключа VD5 в положение 1 (этап 1, рис 2) и процессы, происходящие после размыкания контактов прерывателя и переключения коммутатора VD5 в положение 2 (этап 2, рис. 3).

Этап 1. Согласно схеме замещения (рис. 2) цепь, состоящая из накопительного конденсатора С1, резистора Rвн, сопротивление которого равно внутреннему сопротивлению преобразователя, и резистора Rут, сопротивление которого равно результирующему сопротивлению утечки во вторичной цепи, с помощью коммутатора VD5 подключается к источнику постоянного напряжения Ub, которым является преобразователь.

Напряжение на конденсаторе возрастает по экспоненциальному закону:

Где постоянная времени цепи заряда конденсатора.

Как правило, Rут > Rвн (в противном случае, как будет показано ниже, система вообще не работоспособна), и напряжение на накопительном конденсаторе через время t« ЗТ = 3Rbm С1 практически достигает установившегося значения Ub.
Энергия, запасенная в электрическом поле конденсатора, при этом равна: We1=C1*U2в/2

Необходимым условием нормальной работы системы является полный заряд конденсатора С1 до напряжения Ub, за время между двумя искрами при максимальной частоте вращения вала двигателя.Учитывая, что конденсатор в схеме рис. 1 начинает заряжаться лишь после замыкания контактов прерывателя, и считая скважность работы прерывателя равной 2, это условие для четырехтактного двигателя будет иметь вид:

где z - число цилиндров двигателя; Nmax - максимальная частота вращения коленчатого вала двигателя, об/мин. Для двухтактного двигателя числитель правой части должен быть равен 10. Так, если емкость накопительного конденсатора CI = 1 мкФ, двигатель четырехтактный четырехцилиндровый, имеющий максимальную частоту вращения коленчатого вала птах = 6000 об/мин, то Т< 0,83 мс, и внутреннее сопротивление преобразователя не должно превышать:

Рассмотрим подробнее влияние сопротивления утечки Ryr на работу системы. Сопротивление утечки в основном определяется током утечки тиристора, используемого в качестве коммутатора. Максимальное значение юка утечки имеют тиристоры типа КУ202М (Н): до 10 мА при напряжении 400 В. Сопротивление утечки в этом случае равно:


Таким образом, условие Ryr > Rвн выполняется даже и в этом крайнем случае, и, следовательно, влиянием сопротивления утечки в системах с непрерывным накоплением энергии можно пренебречь. Тем более, что в действительности ток утечки у подавляющего большинства тиристоров этого типа не превышает0,2 + 0,3 мА.

На практике выполнение условия: о полном заряде конденсатора С1 до напряжения Ub, за время между двумя искрами при максимальной частоте вращения вала двигателя, не встречает затруднений. Задавшись определенной энергией Wcl и выбрав значение выходного напряжения преобразователя Ub, из выражения: С1 = 2 Wct/U в - определяют емкость накопительного конденсатора. Внутреннее сопротивление преобразователя Rbh определяется его мощностью. Чем больше мощность преобразователя, тем меньше его внутреннее сопротивление.

Применяя достаточно мощный преобразователь, можно добиться того, чтобы энергия Wcl, а значит, и вторичное напряжение, были постоянными вплоть до самой высокой частоты вращения коленчатого вала двигателя. Что же касается малой частоты вращения, то очевидно, что если накопительный конденсатор успел зарядиться до напряжения Ub при максимальной частоте вращения, он тем более успеет зарядиться до этого напряжения при малой частоте вращения коленчатого вала.

Этап 2. Подключение заряженного накопительного конденсатора С1 к первичной обмотке катушки зажигания.

На рис. 3дана упрощенная схема замещения для второго этапа рабочего процесса.

При ее составлении и анализе приняты следующие допущения: гальваническая связь между обмотками катушки зажигания устранена, искровой контакт распределителя заменен скользящим, распределенные емкости вторичной цепи заменены одной сосредоточенной емкостью С1, активные сопротивления обмоток катушки зажигания равны нулю, коэффициент связи между обмотками равен единице, шунтирование вторичной цепи отсутствует.

Согласно схеме замещения после размыкания контактов прерывателя и переключения коммутатора VD5 в положение 2 в первичной цепи образуется колебательный контур, состоящий из индуктивности L1 первичной обмотки W1 катушки зажигания и суммы емкостей накопительного конденсатора CI и вторичной цепи C2- (W2/W1), приведенной к первичной. Поскольку до коммутации конденсатор С1 был заряжен, после нее в первичном контуре возникают собственные затухающие колебания, частота которых (без учета процессов во вторичной цепи) равна:

Вследствие того, что в момент коммутации параллельно накопительному конденсатору подключается емкость С2 (W2AV1), напряжение на накопительном конденсаторе уменьшается, и максимум первичного напряжения, определенный из условий сохранения заряда, будет равен:

Очевидно, что если Ulmax является максимумом первичного напряжения, то максимум вторичного напряжения определится выражением:

Из этого выражения следует, что, выбрав соответствующим образом емкость накопительного конденсатора С1 так, чтобы CI > С2 {W2/W1), можно добиться малой зависимости вторичного напряжения U2max от значения емкости С2, что принципиально невозможно в классической системе зажигания

Кроме того, в конденсаторной системе зажигания максимум вторичного напряжения мало зависит от значения сопротивления, шунтирующего вторичную цепь. Практика подтверждает, что конденсаторная система зажигания сохраняет работоспособность при низких значениях шунтирующего сопротивления, вплоть до 100 К. Это существенно снижает требования к уходу за свечами зажигания (их чистке, регулировке зазора и т. п.). Срок использования свечей может быть значительно увеличен, поскольку свечи, которые уже нельзя задействовать в классической системе зажигания, могут удовлетворительно работать в конденсаторной системе.

Это связано с тем, что в качестве коммутатора в конденсаторной системе зажигания обычно применяют тиристоры, время переключения которых, определяющее длительность фронта первичного напряжения, всего несколько микросекунд. Конечно, длительность фронта вторичного напряжения зависит, кроме того, от параметров катушки зажигания. Однако даже при применении катушек от классической системы зажигания, фронт импульса вторичного напряжения в конденсаторной системе получается значительно круче, чем в классической.

Очевидно, что потери энергии при конкретных значениях шунтирующего сопротивления и вторичного напряжения пропорциональны времени действия этого напряжения. Поэтому при крутом фронте за время, пока напряжение достигнет максимума, потери будут меньше, чем при пологом фронте. Этим и объясняется малая зависимость U2max в конденсаторной системе зажигания от сопротивления, шунтирующего вторичную цепь.

Схема с непрерывным накоплением энергии в конденсаторе отличается простотой, технологичностью и надежностью конструкции. Недостаток ее - зависимость энергии накопительного конденсатора от напряжения источника питания. Зимой, когда напряжение батареи при пуске снижается до 7 + 8 В, конденсатор заряжается до напряжения около 190 В, накопленная энергия в нем снижается в 4 раза, и пуск затрудняется.

Конденсаторные системы с импульсным накоплением энергии в емкости позволяют иметь хорошую искру при уменьшении напряжения в бортовой сети до 6,5 В. Но эти системы сравнительно сложнее и дороже. К полупроводниковым приборам, применяемым в них, повышены требования в отношении токов утечки, которые должны быть не более 0,1 мА.

Всистемах с импульсным накоплением энергии, накопительный конденсатор заряжается одним мощным импульсом сразу же после окончания искрового разряда в свече зажигания. На рис. 4 приведена принципиальная схема конденсаторной системы зажигания с импульсным
накоплением энергии, а на рис. 5 временные диаграммы ее работы.

Схема включает в себя транзистор VT1, который работает в ключевом режиме, повышающий трансформатор Т1, накопительный конденсатор С1, два диода VDi, VD2, тиристор VD3 и катушку зажигания (КЗ).

При замкнутом выключателе зажигания S и в момент размыкания контактов прерывателя (ti), транзистор VTI переходит в состояние насыщения. Ток управления течет от батареи через резисторы Яд, RI и R2, базу и эмиттер транзистора на корпус автомобиля и"-" батареи. Транзистор проводит линейно - нарастающий ток первичной обмотки трансформатора Т1. В магнитном поле Tf накапливается энергия. По мере увеличения тока 16 в обмотке (01 увеличивается падение напряжения на резисторе R3. Это напряжение поступает на вход схемы управления и, когда ток достигает заданного значения 1р, ключи VT1 и VD3 по сигналу err схемы управления закрываются. Ток в обмотке 0)1 прекращается (Ь, рис. 5). Энергия,накопленная в магнитном поле трансформатора Т1, равная L1 1 р/2, где L1 индуктивность обмотки (01 трансформагора Т1, создает в его обмотках импульсы напряжения. Положительный импутьс с конца обмотки (02 (начала обмоток на рис. 4. обозначены точками) проходит через диод VD1 и заряжает накопительный конденсатор С1 до высокого напряжения 350 В (ts рис. 5). Диод VD 1 предотвращает разряд конденсатора С1 через обмотку 0)2 после окончания действия импульса.

Таким образом, напряжение заряда накопительного конденсатора не зависит от напряжения питания, и при постоянных значениях т|, LI и CI определяется лишь током разрыва 1р.

Указанное свойство системы позволяет относительно простыми средствами получить стабилизированное вторичное напряжение. Для этого необходимо иметь схему управления со стабильным порогом срабатывания. Практическая реализация такой схемы не встречает затруднений.

В момент U контакты прерывателя замыкаются, что не оказывает влияния на работу системы.

В момент ts контакты прерывателя снова размыкаются, а ключи VT1 и VD3 открываются.

Ключ VT1 подключает обмотку С01 трансформатора Т1 к источнику питания и через нее снова начинает протекать линейно - нарастающий ток. Ключ S2.2 подключает заряженный до напряжения 350 В накопительный конденсатор к первичной обмотке WI катушки зажигания. Во
вторичной обмотке W2 катушки зажигания индуцируется высокое напряжение, которое через распределитель поступает к свечам зажигания. Затем описанные процессы повторяются. В момент t6 ток в обмотке (01 трансформатора достигает заданного значения 1р, в момент t7 накопительный конденсатор снова заряжается. В момент U контакты прерывателя размыкаются и в свече зажигания происходит искровой разряд.

Между моментами окончания заряда накопительного конденсатора (b, t?, рис. 5) и моментами, когда конденсатор подключается к катушке зажигания (t5, ts) проходит интервал времени XI В течение этого времени накопительный конденсатор разряжается через обратные сопротивления диода VD 1, тиристора и свое собственное сопротивление изоляции, и напряжение на нем к моменту искрообразования уменьшается на AU. На рис. 5 пунктирной линией показан идеальный случай, когда утечек нет.

Чем ниже частота искрообразования и, следовательно, больше период Ти интервал XI, тем больше разрядится накопительный конденсатор и тем ниже будет напряжение искрообразования. При значительном токе утечки может случиться, что вторичное напряжение при малых пусковых частотах вращения вала двигателя упадет настолько, что окажется недостаточным для пробоя искрового промежутка свечи зажигания.

Определим допустимый ток утечки во вторичной цепи системы с импульсным накоплением энергии, при котором система остается работоспособной при самых малых пусковых частотах вращения вала двигателя, для которых XI = Т.

Количество электричества, первоначально запасенное в накопительном конденсаторе С1, составляет: Ql-Cl-UI.
где С1- емкость накопительного конденсатора; U1 - первоначальное напряжение его заряда.

Суммарный ток утечки во вторичной цепи обозначим 1ут.
Тогда количество электричества, потерянное накопительным конденсатором за время XI * Т, будет равно: AQ - 1ут- T = I)nr/F, где F - частота искрообразования.

Количество электричества, оставшееся в накопительном конденсаторе к моменту искро-образования, определим выражением; Q2=Q1 -AQ=C1 - 111 -Iyr/F, а напряжение U1 на накопительном конденсаторе, соответствующее этому количеству электричества, определится как: U2=Q2/C1 = U1 -Iyr/(F C1), и, следовательно, уменьшение напряжения к моменту искрообразования будет равно: ди = 1ут/ (F С1).

Окончательное выражение для определения допустимого суммарного тока утечки 1ут, мА, для четырехтактного четырехцилиндрового двигателя будет иметь вид:
1ут5п-С1 -U1 -у/3, где п - частота вращения вала двигателя, об/мин; у = 100 AU/U1 - допустимое уменьшение напряжения искрообразования при частоте п, %; Ш - первоначальное напряжение заряда накопительного конденсатора, В; С1 - емкость накопительного конденсатора, мкФ.

Вкачестве примера, определим допустимое значение тока утечки для следующего практического случая, минимальная пусковая частота вращения вала двигателя п = 150 об/мин; емкость накопительного конденсатора CI = 1 мкФ; первоначальное напряжение на накопительном конденсаторе U1 = 350 В, а допустимое его уменьшение V = 15% (4U =52 В):
\ут£ 150 -10 350 - 1S/3 = 0,26мА.

Как было указано выше, ток утечки тиристора типа КУ202М (Н) согласно его техническим условиям может достигать 10 мА, и несмотря на это такой тиристор работоспособен в системе с непрерывным накоплением энергии. Для системы же с импульсным накоплением такой тиристор непригоден. Даже если ток утечки тиристора будет равен 1 мА, то напряжение искрообразования при пусковой частоте вращения вала двигателя п = 150 об/мин уменьшится на 57%, т. е. к первичной обмотке катушки зажигания будет подводиться не 350 В, а всего 150 В, и система будет неработоспособна.

В связи с этим тиристоры для систем с импульсным накоплением энергии необходимо специально отбирать по току утечки. На практике, правда, это не встречает затруднений, так как у подавляющего большинства тиристоров - ток утечки составляет 0,2 + 0,3 мА.

Как и в системе с непрерывным накоплением энергии, в данном случае необходимым условием нормальной работы системы является также полный заряд накопительного конденсатора к моменту новообразования при максимальной частоте вращения вала двигателя.

Из рис5 видно, что время заряда накопительного конденсатора складывается из двух фаз - времени Т2 нарастания тока в обмотке (01 трансформатора Т1 и времени Тз непосредственного заряда конденсатора после разрыва тока. Ввиду того, что нарастание тока в обмотке (01 начинается одновременно с размыканием контактов прерывателя, условие нормальной работы системы с импульсным накоплением для четырехтактного двигателя будет иметь вид: Т2 + ТЗ < 120/Z Птах, где г - число цилиндров; птах - максимальная частота вращения вала двигателя.

Сравнение этого условия с аналогичным для СЗ с непрерывным накоплением показывает, что оно менее жесткое, и на практике его выполнение не встречает затруднений.

Процессы, происходящие в момент размыкания контактов прерывателя и переключения ключа в положение 2, в системе с импульсным накоплением энергии не отличаются от аналогичных процессор в системе с непрерывным накоплением.

Системы с импульсным накоплением энергии имеют наибольшую скорость нарастания высокого напряжения. Но длительность индуктивной составляющей искрового разряда в свечах уменьшена от единиц миллисекунд (в системах с накоплением энергии в индуктивности) до десятков или сотен микросекунд. Это ухудшает воспламенение и сгорание рабочей смеси на средних нагрузках и, следовательно, приводит к повышению расхода топлива и токсичности отработавших газов. Для устранения указанных недостатков надо корректировать автоматы опережения зажигания и увеличивать зазор в свечах до 1,2 + 1,5 мм, что приводит к дальнейшему возрастанию вторичного напряжения и напряженной работе изолирующих частей высоковольтной системы.

Вверх