Дизельный двигатель в разрезе. Система питания дизельного двигателя. Принцип работы двигателя Дизеля

Принцип работы которого основан на самовоспламенении топлива при воздействии горячего сжатого воздуха.

Конструкция дизеля в целом мало чем отличается от бензинового двигателя , за исключением того, что в дизеле отсутствует как таковая система зажигания, поскольку воспламенение топлива происходит по другому принципу. Не от искры, как в бензиновом двигателе, а от высокого давления, с помощью которого сжимается воздух, из-за чего тот сильно разогревается. Высокое давление в камере сгорания накладывает особые требования к изготовлению деталей клапанов, которые предназначены для восприятия более серьезных нагрузок (от 20 до 24 единиц).

Дизельные двигатели применяются не только на грузовых, но и на многих моделях легковых автомобилей. Дизели могут работать на различных типах топлива - на рапсовом и пальмовом масле, на фракционных веществах и на чистой нефти.

Принцип действия дизельного двигателя

Принцип действия дизеля основан на компрессионном воспламенении топлива, которое попадает в камеру сгорания и смешивается с горячей воздушной массой. Рабочий процесс дизеля зависит исключительно от неоднородности ТВС (топливно-воздушной смеси). Подача ТВС в таком типе двигателя происходит раздельно.

Вначале подается воздух, который в процессе сжатия нагревается до высоких температур (около 800 градусов по Цельсию) , затем в камеру сгорания под высоким давлением (10-30 МПа) подается топливо, после чего происходит его самовоспламенение.

Сам процесс воспламенения топлива всегда сопровождается высокими уровнем вибраций и шума, поэтому двигатели дизельного типа являются более шумными в сравнении с бензиновыми собратьями.

Подобный принцип работы дизеля позволяет использовать более доступные и дешевые (до недавнего времени:)) виды топлива, снижая уровень затрат на его обслуживание и заправку .

Дизели могут иметь как 2, так и 4 рабочих такта (впуск, сжатие, рабочий ход и выпуск). Большинство автомобилей оснащено 4-х тактовыми дизельными двигателями.

Типы дизельных двигателей

По конструкционным особенностям камер сгорания дизели можно разделить на три типа:

  • С разделенной камерой сгорания. В таких устройствах подача топлива осуществляется не в основную, а в дополнительную, т.н. вихревую камеру, которая располагается в головке цилиндрового блока и соединяется с цилиндром каналом. При попадании в вихревую камеру воздушная масса максимально сжимается, тем самым улучшая процесс воспламенения топлива. Процесс самовоспламенения начинается в вихревой камере, затем переходит в основную камеру сгорания.
  • С неразделенной камерой сгорания. В таких дизелях камера располагается в поршне, а топливо подается в пространство над поршнем . Нераздельные камеры сгорания с одной стороны позволяют экономить расход топлива, с другой стороны - повышают уровень шума при работе двигателя.
  • Двигатели предкамерные. Подобные дизели оснащаются вставной форкамерой, которая соединяется с цилиндром тонкими каналами. Форма и размер каналов определяют скорость движения газов при сгорании топлива, снижая уровень шума и токсичности, увеличивая ресурс работы двигателя.

Топливная система в дизельном двигателе

Основой любого двигателя дизельного типа является его топливная система. Основной задачей топливной системы является своевременная подача нужного количества топливной смеси под заданным рабочим давлением.

Важными элементами топливной системы в дизельном двигателе являются:

  • насос высокого давления для подачи топлива (ТНВД);
  • топливный фильтр;
  • форсунки

Топливный насос

Насос отвечает за подачу топлива к форсункам по установленным параметрам (в зависимости от числа оборотов, рабочего положения регуляторного рычага и давления турбонаддува). В современных дизельных двигателях могут применяться два типа насосов для топлива - рядные (плунжерные) и распределительные.

Топливный фильтр

Фильтр является важной составляющей частью двигателя дизельного типа. Топливный фильтр подбирается строго в соответствии с типом двигателя. Фильтр предназначен для выделения и удаления из топлива воды, и лишнего воздуха из топливной системы.

Форсунки

Форсунки не менее важные элементы топливной системы в дизеле. Своевременная подача топливной смеси в камеру сгорания возможна только при взаимодействии топливного насоса и форсунок. В дизелях применяются два типа форсунок - с многодырчатым и шрифтовым распределителем. Распределитель форсунок определяет форму факела, обеспечивая более эффективный процесс самовоспламенения.

Холодный пуск и турбонаддув дизельного двигателя

Холодный пуск отвечает за механизм предпускового подогрева. Это обеспечивается за счет электрических нагревательных элементов - свечей накаливания, которыми оснащена камера сгорания. При запуске двигателя свечи накаливания достигают температуры в 900 градусов, подогревая воздушную массу, которая попадает в камеру сгорания. Питание со свечи накаливания снимается через 15 секунд после запуска двигателя. Системы подогрева перед запуском двигателя обеспечивают его безопасный запуск даже при низких атмосферных температурах.

Турбонаддув отвечает за повышение мощности и эффективности работы дизеля. Он обеспечивает подачу большего количества воздуха для более эффективного процесса сгорания топливной смеси и увеличения рабочей мощности двигателя. Для обеспечения нужного давления наддува воздушной смеси во всех рабочих режимах двигателя применяется специальный турбонагнетатель.

Остается только сказать, что споры относительно того, что лучше выбрать рядовому автолюбителю в качестве силовой установки в свой автомобиль, бензин или дизель , не утихают до сих пор. Преимущества и недостатки есть у обоих типов двигателя и выбирать необходимо, исходя из конкретных условий эксплуатации автомобиля.

Несколько отличается от бензиновых аналогов. Главным отличием можно считать воспламенение топливно-воздушной смеси, которое происходит не от внешнего источника (искры зажигания), а от сильного сжатия и нагрева.

Другими словами, в дизельном двигателе происходит самовоспламенение топлива. При этом горючее должно подаваться под крайне высоким давлением, так как необходимо максимально эффективно распылить горючее в цилиндрах дизельного мотора. В этой статье мы поговорим о том, какие системы впрыска дизельных двигателей сегодня активно используются, а также рассмотрим их устройство и принцип работы.

Читайте в этой статье

Как работает топливная система дизельного двигателя

Как уже было сказано выше, в дизельном двигателе происходит самовоспламенение рабочей смеси топлива и воздуха. При этом сначала в цилиндр подается только воздух, затем этот воздух сильно сжимается и нагревается от сжатия. Чтобы произошло возгорание, нужно подать ближе к концу такта сжатия.

С учетом того, что воздух сильно сжимается, горючее также необходимо впрыснуть под высоким давлением и эффективно распылить. В различных дизельных давление впрыска может отличаться, начиная, в среднем, с отметки в 100 атмосфер и заканчивая впечатляющим показателем более 2 тыс. атмосфер.

Для наиболее эффективной подачи топлива и обеспечения оптимальных условий для самовоспламенения заряда с последующим полноценным сгоранием смеси топливный впрыск реализован через дизельную форсунку.

Получается, независимо от того, какой тип системы питания используется, в дизельных двигателях всегда присутствуют два основных элемента:

  • устройство для создания высокого давления топлива;

Другими словами, на многих дизелях давление создает (топливный насос высокого давления), а подача дизтоплива в цилиндры происходит через форсунки. Что касается отличий, в разных системах топливоподачи насос может иметь ту или иную конструкцию, также по своему устройству отличаются и сами дизельные форсунки.

Еще системы питания могут отличаться по расположению тех или иных составных элементов, имеют разные схемы управления и т.д. Давайте рассмотрим системы впрыска дизельных двигателей более подробно.

Системы питания дизельных двигателей: обзор

Если разделить системы питания дизельных моторов, которые получили наибольшее распространение, можно выделить следующие решения:

  • Система питания, в основе которой лежит ТНВД рядного типа (рядный ТНВД);
  • Система топливоподачи, которая имеет ТНВД распределительного типа;
  • Решения с насос-форсунками;
  • Топливный впрыск Common Rail (аккумулятор высокого давления в общей магистрали).

Указанные системы также имеют большое количество подвидов, при этом в каждом случае тот или иной тип является основным.

  • Итак, начнем с самой простой схемы, которая предполагает наличие рядного топливного насоса. Рядный ТНВД представляет собой давно известное и проверенное решение, которое используется на дизелях не один десяток лет. Такой насос активно используется на спецтехнике, грузовиках, автобусах и т.д. Если сравнивать его с другими системами, насос достаточно большой по своим габаритам и весу.

В двух словах, в основе рядного ТНВД лежат . Их количество равняется количеству цилиндров двигателя. Плунжерная пара представляет собой цилиндр, который движется в «стакане» (гильзе). При движении вверх происходит сжатие топлива. Затем, когда давление достигает необходимого показателя, происходит открытие специального клапана.

В результате предварительно сжатое топливо поступает на форсунку, после чего происходит впрыск. После того, как плунжер начнет двигаться обратно вниз, открывается канал для впуска топлива. Через канал горючее заполняет пространство над плунжером, далее цикл повторяется. Чтобы солярка попадала в плунжерные пары, дополнительно в системе имеется отдельный подкачивающий насос.

Сами плунжеры работают благодаря тому, что в устройстве насоса имеется кулачковый вал. Этот вал работает подобно , где кулачки «толкают» клапана. Сам вал насоса приводится от двигателя, так как ТНВД соединен с мотором при помощи муфты опережения впрыска. Указанная муфта позволяет корректировать работу и подстраивать ТНВД в процессе эксплуатации двигателя.

  • Система питания с распределительным насосом не сильно отличается от схемы с рядным ТНВД. Распределительный ТНВД похож на рядный по конструкции, при этом в нем уменьшено количество плунжерных пар.

Другими словами, если в рядном насосе пары необходимы на каждый цилиндр, то в распределительном достаточно 1 или 2 плунжерных пар. Дело в том, что одной пары в этом случае достаточно для подачи горючего в 2, 3 или даже 6 цилиндров.

Это стало возможным благодаря тому, что плунжер получил возможность не только двигаться вверх (сжатие) и вниз (впуск), но также вращаться вокруг оси. Такое вращение позволило реализовать поочередное открытие выпускных отверстий, через которые дизтопливо под высоким давлением подается на форсунки.

Дальнейшее развитие этой схемы привело к появлению более современного роторного ТНВД. В таком насосе применен ротор, в котором установлены плунжеры. Указанные плунжеры движутся навстречу по отношению друг к другу, а ротор осуществляет вращение. Так происходит сжатие и распределение солярки по цилиндрам мотора.

Главным плюсом распределительного насоса и его разновидностей является сниженный вес и компактность. При этом настраивать данное устройство сложнее. По этой причине дополнительно используются схемы электронного управления и регулировки.

  • Система питания типа «насос-форсунка» представляет собой схему, где изначально отсутствует отдельный ТНВД. Если точнее, форсунка и насосная секция были объединены в одном корпусе. В основе лежит уже знакомая плунжерная пара.

Решение имеет ряд преимуществ по сравнению с системами, в которых использован ТНВД. Прежде всего, можно легко отрегулировать подачу топлива в отдельные цилиндры. Также в случае выхода одной форсунки из строя, остальные будут работать.

Также использование насос-форсунок позволяет избавиться от отдельного привода ТНВД. Плунжеры в насос-форсунке приводятся в действие от распредвала ГРМ, который установлен в . Такие особенности позволили дизельным моторам с насос-форсунками получить широкое распространение не только на грузовиках, но и на крупных легковых автомобилях (например, дизельные внедорожники).

  • Система Сommon Rail является одной из самых современных решений в области топливного впрыска. Также данная схема питания позволяет добиться максимальной экономичности одновременно с высоким . Параллельно снижается и токсичность отработавших газов.

Система была разработана немецкой фирмой Bosch в 90-х годах. С учетом очевидных преимуществ за короткое время подавляющее большинство дизельных ДВС на легковых и грузовых авто стали оснащать исключительно Сommon Rail.

Общая схема устройства основана на так называемом аккумуляторе высокого давления. Если просто, горючее находится под постоянным давлением, после чего подается к форсункам. Что касается аккумулятора давления, данный аккумулятор фактически является топливной магистралью, куда горючее нагнетается при помощи отдельного ТНВД.

Система Сommon Rail частично напоминает бензиновый инжекторный двигатель, который имеет топливную рампу с форсунками. Бензин в рампу (топливную рейку) нагнетается под небольшим давлением бензонасосом из бака. В дизеле давление намного выше, горючее нагнетает ТНВД.

Благодаря тому, что давление в аккумуляторе постоянное, стало возможным реализовать быстрый и «многослойный» впрыск топлива через форсунки. Современные системы в двигателях Common Rail позволяют форсункам сделать до 9 дозированных впрысков.

В результате дизельный двигатель с такой системой питания экономичный, производительный, работает мягко, тихо и эластично. Также использование аккумулятора давления позволило сделать конструкцию ТНВД на дизельных моторах более простой.

Добавим, что высокоточный впрыск на двигателях Common Rail является полностью электронным, так как за работой системы следит отдельный блок управления. В системе используется группа датчиков, которые позволяют контроллеру точно определить, сколько дизтоплива нужно подать в цилиндры и в какой момент.

Подведем итоги

Как видно, каждая из рассмотренных систем питания дизельного двигателя имеет свои преимущества и недостатки. Если говорить о простейших решениях с рядным ТНВД, их главным плюсом можно считать возможность ремонта и доступность обслуживания.

В схемах с насос-форсунками нужно помнить о том, что данные элементы чувствительны к качеству топлива и его чистоте. Попадание даже мельчайших частиц может вывести из строя насос-форсунку, в результате чего дорогостоящий элемент потребует замены.

Что касается систем Common Rail, главным недостатком является не только высокая начальная стоимость таких решений, но и сложность и дороговизна последующего ремонта и обслуживания. По этой причине за качеством топлива и состоянием топливных фильтров нужно постоянно следить, а также своевременно проводить плановое обслуживание.

Читайте также

Виды дизельных форсунок в разных системах подачи топлива под высоким давлением. Принцип работы, способы управления форсунками, конструктивные особенности.

  • Устройство и схема работы системы питания дизельного двигателя. Особенности топлива и его подачи, основные компоненты системы питания, турбодизельный ДВС.
  • Дизельные двигатели для автомобилей бывают разные, и дело не только в объёме и количестве цилиндров, поэтому попробуем кратко обозреть современный рынок и выяснить, какие из моторов самые надёжные.

    Кому рейтинги отдали лидерство?

    Ассоциации со словом «дизель» у жителя России всегда однозначны: запах солярки от пассажирского автобуса, чёрная гарь от проезжающего мимо грузовика, винтажные джинсы и часы одноименного бренда. Тем не менее у большинства жителей Европы слово, происходящее от фамилии немецкого изобретателя - это синоним надежного, недорогого и мощного «сердца» автомобиля. В нашей же стране его популярность не такая высокая, видимо, из-за погодных условий и знаний, что солярка густеет на холоде.

    Рейтинги надежности, а особенно для автомобилей - дело неблагодарное. Сколько мнений, столько и списков, в которых составитель просто выражает свой взгляд на тот или иной предмет. Именно поэтому хотим обратить внимание, что приводимый ниже рейтинг не претендует стать неоспоримой истиной, а всего лишь попытка систематизировать данные, знания и (частично) личная точка зрения составителя.

    В поисках ответа на вопрос, какой двигатель на дизельном топливе занимает ведущее место в комплектации легковых автомобилей, можно заметить, что некоторые рейтинги называют самой лучшей продукцию концернов Mercedes и BMW. Однако ситуация в мире автопромышленности сегодня несколько иная, попробуем разобраться.

    Как показывают рейтинги крупных мировых автомобильных салонов, времена, когда дизельные двигатели легковушек представляли собой уменьшенные копии агрегатов, установленных на тяжеловесных грузовиках, ушли в прошлое. Особенно преуспел в выпуске таких моторов известный всем концерн Volkswagen, разработавший двигатель 1,9 TDI. На сегодняшний день он занимает первое место и считается самым сбалансированным по динамике и мощности.

    Благодаря новейшим инженерным решениям, в частности, обновлённой турбине и увеличению давления в камерах сгорания, удалось не только добиться уникальных экологических характеристик, но и снизить . Причём мощность осталась на прежнем уровне (90–120 л. с.). Самые новые автомобили серии Passat оборудованы сейчас двигателем с максимальными показателями (комплектация BlueMotion). Расход топлива составляет 3,3 л на 100 км.

    Дизельные призёры авторынка

    Второе место занимает модификация мотора с трёмя турбинами, принадлежащая немецкой компании BMW. В первый раз этот агрегат был представлен несколько назад. Он обладает 6 цилиндрами и, имея объём 3,0 л, способен развивать мощность в 381 л. с. Комплектуются этими движками новейшие автомобили 5 и 7 серий, а также тяжеловесные кроссоверы с индексами Х5 и Х6. Модификацией его снабжены кабриолеты, имеющие серийный номер 6. Правда она имеет две турбины, за счёт чего мощность уменьшена до 313 л. с.

    Не так давно на суд потенциальных покупателей были представлены автомашины, чьи двигатели имеют четыре турбины, и при крутящем моменте в 800 Нм, мощность будет в рамках 390–406 л. с.

    Автомашина с четырёхтурбинным двигателем

    Третье место нашего рейтинга заняла американская фирма промышленных дизельных движков Cummins, выпустившая суперфорсированный двигатель по заказу известной компании Dodge. Справедливости ради нужно отметить, что заокеанские производители не слишком жаловали вниманием дизельные моторы, предпочитая разрабатывать бензиновые. Однако увеличивающийся в последнее время спрос на автомобили с агрегатами, потребляющими солярку, заставил их обратить внимание на производство дизелей.

    Модель показала себя достаточно мощной (240–275 л. с.), но в попытке занять «дизельную» нишу на рынке американцы слукавили и выдали за свою разработку итальянского концерна Fiat. Моделью такого двигателя оборудовался Maserati Ghibli, но из-за кризиса производство было отдано штатовским промышленникам.

    Движок этот был признан не только самым экологичным, но и самым инновационным: при его производстве были применены металлы, использующиеся в космической промышленности и фильтры плазменной очистки топлива. То, что двигатель занял только третье место, «заслуга» узкой направленности. Его устанавливают только на спортивные болиды и пикапы Dodge Ram. По экономичности он может дать фору своим конкурентам: расход составляет всего 8,5 л на 100 километров.

    Кто не сильно отстал от тройки призеров?

    Ворвавшиеся 20 лет назад на мировой автомобильный рынок корейцы не только сумели занять на нем достойное место, но и «подвинуть» в рейтинге японских гигантов. Пройдя длинный путь «от электрочайников до карьерных самосвалов», они также не хотят упускать своей выгоды, которую сулит повышенный спрос на авто, оборудованные дизельными двигателями.

    Как всегда, азиатские производители поступили весьма хитро: не желая капитально перестраивать производство и соревноваться с европейцами и американцами в мощности агрегатов, им удалось создать мотор объемом 1,7 л, который может выдавать 110–136 л. с. Не спешите презрительно морщить нос! При таких довольно скромных (по сравнению с продукцией других производителей) данных, дизель компании Hyundai обладает таким невероятным крутящим моментом, что не уступает в динамике бензиновым агрегатам, имеющим мощность 150–170 л. с.

    Надо сказать, что таким агрегатом оборудован автомобиль Hyundai i40, поставляемый на европейский рынок. В Корее также дизельные двигатели как-то не нашли широкого применения (или туда еще не дошла волна «моды»), а потому их пока что ставят только на экспортные машины. В последнее время этот же агрегат появлялся на кроссовере с индексом ix35, а сейчас им оснащают такие популярные автомобили, как Grandeur и Sonata. Расход топлива, правда, побольше, чем у конкурентов, но корейцы и не стремятся кого-то удивлять. Их задача – поставлять надежных «рабочих лошадок», способных на среднее потребление топлива, в этом случае – 5,5 л на 100 км.

    «Выжав» достаточное количество мощности из автомобилей и завоевав на рынке свою ячейку, японскому концерну Toyota теперь нет смысла кому-то что-то доказывать. Концепция, на которую производители бросили все силы, это экология и экономия при сохранении достаточной мощности. И это им удалось. Создавая двигатель для своего компактного автомобильчика с именем Urban Cruiser, они думали о том, чтобы жителям мегаполисов было не только удобно передвигаться по городу, но и в их головах не включался бы «калькулятор», подсчитывающий расходы на топливо.

    Один из самых маленьких на сегодняшний день дизельных агрегатов – это 1,4 л мотор с мощностью всего 90 л. с. Это пятое место нашего рейтинга. Такие параметры, однако, не мешают создавать крутящий момент, позволяющий легко «тянуть» полноприводный автомобиль. Расход же дизельного топлива, в зависимости от режима поездки, составляет от 4 до 6 л на 100 км.

    Так какой из них самый надежный?

    Такой вопрос немного наивен, так как этот параметр зависит от многих факторов, в том числе и от манеры вождения. Но если выбирать лучший из вышеприведенного перечня, то первенство по надежности будет отдано американцам Cummins с двигателем Dodge.

    И дело не в мощности или расходе топлива на 100 км. Скорее всего, роль играют материалы, применяемые в производстве. Блок цилиндра сделан из высокоуглеродистого чугуна, способного выдержать не только высокое давление, но и значительный температурный режим. А его поршни делаются из специального алюминиевого сплава, который применяется в деталях космических аппаратов. Это значит, что они способны выдержать и длительную работу при экстремальных режимах, и резкое повышение нагрузки при смене скоростного режима.

    Также двигатель оборудован топливной системой впрыска Common Rail, которая, несмотря на довольно капризное отношение к качеству дизельного топлива, не только значительно экономит его расход, но и играет решающую роль в уменьшении шума мотора. Именно этими двигателями оборудуются как спортивные машины, так и авто повышенной проходимости. То есть, именно те экземпляры автопрома, эксплуатация которых происходит в экстремальных условиях, требуя от мотора не только непревзойденной мощности, но и безупречной надежности.

    Если говорить о рейтинге автомобилей, которые подходят для российских дорог, лучше всего обратить внимание на образцы японского производства. Необязательно это будет Toyota (к двигателю которой, кстати, ни у одного российского автолюбителя претензий нет).

    Для наших необъятных просторов вполне сгодятся Mazda, Honda, Nissan или вновь возрожденный Datsun. Весьма неплохо показала себя в эксплуатации Subaru.

    Дело в том, что европейские машины, оборудованные дизельным двигателем, очень чувствительны к нашей солярке, качество очистки которой оставляет желать лучшего. Как показывают многочисленные отзывы автовладельцев, японские авто менее подвержены неисправностям при пользовании дизельным топливом, благодаря многочисленным устройствам очистки, электронным приспособлениям и встроенным предпусковым подогревателям, не дающим застывать солярке при низком температурном режиме.

    История дизеля начинается почти с изобретения бензинового двигателя. Николаус Август Отто изобрел и запатентовал бензиновый двигатель в 1876 году, который использовал принцип четырёхтактного сгорания, также известный на западе как "цикл Отто ", и это основная предпосылка для большинства автомобильных двигателей сегодня. В своей ранней стадии, однако, бензиновый двигатель был крайне неэффективным в своей работе, поэтому в те времена ещё долгое время широко использовался паровой двигатель для транспортировки всего, что было нужно транспортировать. Главным недостатком в работе обоих двигателей было то, что они эффективно использовали только около 10 процентов топлива из всего поступающего топлива в эти типы двигателей. Остальная часть просто превращалась в бесполезное тепло, а бензин выходил с выхлопом не сгоревшим.


    Дизельный двигатель Porsche Cayenne S 2013 модельного года

    Уже через 2 года - в 1878 году - Рудольф Дизель во время посещения политехнической средней школы в Германии (эквивалент инженерного университета в России) узнал о низкой эффективности работы бензиновых и паровых двигателей. Эта тревожная информация вдохновила его на создание двигателя, который мог бы работать с более высокой эффективностью, и он посвятил бóльшую часть своего времени на развитие такой технологии, которая бы позволила расходовать природные ресурсы нашей планеты гораздо эффективнее. И вот, наконец, только к 1892 году Дизель получил патент за то, что мы сегодня называем дизельным двигателем.


    Рудольф Дизель и изобретённый им дизельный двигатель

    Но если дизельные двигатели работают настолько эффективно, почему бы нам не использовать их чаще? Почему бы нам, в конце концов, не использовать только их? Вы можете увидеть слова "дизель", "солярка" и подумать о здоровенных грузовых автомобилях, извергающих из длинной выхлопной трубы чёрный, закопчённый дым при работе двигателями и создавая при этом довольно громкий гремящий шум. Этот негативный образ дизельных грузовиков сделал дизель менее привлекательным для обычных водителей в нашей стране, хотя дизель отлично подходит для перевозки крупных партий на большие расстояния, он практически никогда не был лучшим выбором для легковых автомобилей. Тем не менее, на сегодняшний день ситуация начинает меняться, и дизелем комплектуются даже заряженные версии легковых авто и изредка даже спортивные машины , так как современные технологии значительно улучшили дизельный двигатель, сделав его намного чище (экологичнее) и менее шумным.


    А это дизельный двигатель большого теплохода мощностью около 10 000 лошадиных сил

    Объясняя, как работает дизельный двигатель, мы будем опираться на то, что Вы уже знаете, как работает бензиновый четырёхтактный двигатель. Поэтому, если Вы ещё не сделали этого, Вам, вероятно, будет лучше прочитать сначала , чтобы получить ряд знаний и азов по основам двигателя внутреннего сгорания.

    Дизель против бензина

    В теории дизельный и бензиновый двигатели очень похожи. Они оба являются двигателями внутреннего сгорания, предназначенными для преобразования химической энергии топлива в доступную для дальнейшего движения автомобиля механическую энергию. Эта механическая энергия получается за счёт движения поршней вверх и вниз внутри цилиндров. Поршни соединены с коленчатым валом через шатуны, а сам коленвал имеет форму зигзага - получается, что линейное движение поршней создаёт вращательное движение коленвала, необходимое, чтобы повернуть колёса автомобиля и привести его (авто) в движение.

    При этом, и дизельный, и бензиновый двигатели превращают топливо в механическую энергию через серию небольших взрывов, которые выталкивают поршни, заставляя их двигаться. Основное различие между дизелем и бензиновым "движком" заключается в том, что провоцирует эти взрывы. В бензиновом двигателе топливо смешивается с воздухом, сжимается поршнями и возгорается от искры, которая появляется от свечей зажигания. В дизельном двигателе, однако, сначала поршнем сжимается воздух, и только затем топливо впрыскивается. Так как воздух нагревается, когда он сжимается, топливо воспламеняется.

    Как работает дизельный двигатель?

    Анимация ниже показывает, как работает дизельный двигатель, в действии - также 4 цикла работы. Вы можете сравнить его с анимацией работы бензинового двигателя и увидеть различия.

    Дизельный двигатель использует четырёхтактный цикл сгорания:

    1. Такт впуска - когда открывается впускной клапан, впуская воздух. В это время поршень движется вниз, засасывая воздух.
    2. Такт сжатия - поршень движется вверх и сжимает воздух, которому некуда деваться, так как впускной клапан закрылся.
    3. Такт воспламенения - когда поршень достигает вершины (верхней мёртвой точки, ВМТ), топливо впрыскивается в нужное время и воспламеняется, сильно толкая поршень вниз.
    4. Такт выпуска отработавших газов - поршень снова движется вверх, выталкивая выхлопные газы, созданные при сгорании топливо-воздушной смеси, из выпускного клапана.

    Вот все 4 цикла работы дизельного двигателя, но ещё проще:

    Следует помнить, что дизельный двигатель, в отличие от бензинового, не имеет свеч зажигания, а также впускает в цилиндры сначала воздух, а затем солярку (в цилиндры бензинового двигателя топливо-воздушная смесь поступает уже готовой). Именно тепло сжатого воздуха зажигает топливо в дизельном двигателе.

    Интересный момент: при своей работе топливо-воздушная смесь в дизельном двигателе сжимается гораздо сильнее, чем в бензиновом - если бензиновый двигатель сжимает топливо и воздух в соотношении от 8:1 до 12:1, то дизельный двигатель сжимает воздух в соотношении от 14:1 до более, чем 25:1.

    Инжектор (форсунки) в дизеле

    Одна большая разница между дизельным двигателем и бензиновым двигателем заключается в процессе впрыска топлива. Большинство автомобильных двигателей используют инжектор для этого (или в редких уже на сегодняшний день случаях карбюратор). Инжектор впрыскивает топливо непосредственно перед тактом впуска (вне цилиндра). Карбюратор смешивает воздух и топливо задолго до того, как воздух поступает в цилиндр. В двигателе автомобиля, таким образом, все топливо загружается в цилиндр во время такта впуска, а затем сжимается поршнем. Сжатие топливо-воздушной смеси ограничивает степень сжатия двигателя - если сжать слишком много воздуха, то смесь топлива и воздуха спонтанно воспламенится и испортит двигатель, так как такт воспламенения начнётся раньше того момента, когда поршень достигнет верхней точки.

    Дизельные двигатели используют непосредственный впрыск топлива - дизельное топливо впрыскивается непосредственно в цилиндр уже после того, как туда попадёт воздух. Инжектор или, как правильнее, топливные форсунки в дизельном двигателе является наиболее сложным компонентом и, нужно отметить, предметом большой доли экспериментов - в каждом конкретном двигателе инжектор может быть расположен в самых различных, а иногда и неожиданных местах. Инжектор должен быть способен выдерживать температуру и давление, которое создаётся внутри цилиндра, а ещё он должен смочь доставить топливо в виде мелкодисперсного тумана. Сделать так, чтобы этот туман, попадая в цилиндр, равномерно распределялся по нему, является большой проблемой, вот почему ряд дизельных двигателей используют специальные индукционные клапаны, камеры предварительного сгорания или другие устройства, чтобы создать завихрение воздуха в камере сгорания или иначе улучшить процесс зажигания и горения.


    Работа топливной форсунки

    Некоторые дизельные двигатели всё же содержат свечу. Когда дизельный двигатель холодный, процесс сжатия может не поднять до достаточно высокой температуры для воспламенения топлива сжатый воздух. Специальная свеча накаливания в дизеле по сути является проводом для электрического подогрева (представьте горячие проводки, которые Вы видели в тостере), который нагревает камеру сгорания и повышает, тем самым, температуру воздуха, когда двигатель холодный, так чтобы двигатель мог завестись.

    Все функции в современном дизельном двигателе контролируются компьютером и продуманным набором датчиков, измеряющих практически всё: от оборотов коленчатого вала до системы охлаждения двигателя и температуры масла и даже положение двигателя относительно горизонта. Свечи накаливания используются редко сегодня на более мощных двигателях. Вместо них используются другие технологии, самая распространённая из которых - это более сильное сжатие воздуха (для большего нагрева) и более поздний впрыск топлива.

    Тем не менее, в ряде дизельных двигателей не представляется возможным решить проблему запуска в холодную погоду указанным выше способом. Кроме того, есть двигатели, которые не имеют такие продвинутые технологии управления компьютером. Потому использование свечей накаливания для двух случаев выше решает проблему холодного запуска.

    Дизельное топливо

    Любое нефтяное топливо берёт своё начало из сырой нефти, которая, естественно, добывается из земли. Далее сырая нефть перерабатывается на нефтеперерабатывающих заводах и может быть разделена на несколько разных видов топлива, в том числе бензин, реактивное топливо, керосин и, конечно же, дизельное топливо (солярку).

    Если Вы хоть раз пытались сравнить дизельное топливо и бензин, то Вы знаете, что они сильно разные. Даже их запах сильно отличается. Дизельное топливо тяжелее и более жирное. Оно испаряется значительно медленнее, чем бензин, а температура его кипения на самом деле выше, чем температура кипения воды. Вы, вероятно, часто слышали, что дизельное топливо называют "соляркой" - это потому что оно такое жирное (есть такое вещество - соляровое масло, и его раньше часто сравнивали с дизельным топливом).

    Дизельное топливо испаряется медленнее, потому что оно тяжелее. Оно содержит больше углеродоатомов в длинных цепочках, чем бензин (бензин, как правило, имеет химическую формулу C9H20 (но может иметь и другую в зависимости от марки, октанового числа и т.п.), в то время как дизельное топливо, как правило, характеризуется формулой C14H30 ). Требуется меньшее время и количество этапов переработки для создания дизельного топлива, и поэтому оно как бы должно быть дешевле, чем бензин. Но в последние годы, однако, спрос на дизель поднялся по нескольким разным причинам, в том числе из-за повышенной индустриализации и строительства в нашей стране, и потому на сегодняшний день дизельное топливо стоит дороже бензина.

    Дизельное топливо имеет более высокую так называемую плотность энергии , чем бензин. В среднем, 1 галлон (3,8 л) дизельного топлива содержит около 155x10 6 джоулей энергии, в то время как 1 галлон бензина содержит 132x10 6 джоулей. Это, в сочетании с повышенной эффективностью дизельных двигателей за счёт большей степени сжатия, объясняет, почему дизельные двигатели расходуют намного меньше топлива, нежели эквивалентные им бензиновые двигатели.

    Дизельное топливо используется для питания широкого спектра транспортных средств и другой техники. Сюда, прежде всего, нужно включить, конечно же, дизельные грузовики, которые Вы видите крейсерящими по шоссе, но также дизель помогает двигаться лодкам, школьным автобусам, поездам, кранам, сельскохозяйственному оборудованию и тракторам, генераторам электричества и многой-многой другой технике. Подумайте о том, насколько важен дизель в экономике - без высокой эффективности дизельного топлива строительная индустрия и сельскохозяйственные предприятия страдали бы от требуемых инвестиций в топлива с низким энергопотреблением и эффективностью. Около 94 процентов грузов во всём мире - будь то отправленные грузовиками, поездами или кораблями - доставляются в конечные точки именно за счёт дизельного топлива.

    Улучшение дизельного двигателя и дизельного топлива

    С точки зрения окружающей среды дизель имеет и плюсы, и минусы. Плюс - дизель испускает очень небольшое количество угарного газа, углеводородов и углекислого газа - выбросов, более всего приводящих к глобальному потеплению. Минус - большие количества соединений азота и твёрдых частиц (сажи) высвобождаются во время сжигания дизельного топлива, что приводит к выпадению кислотных дождей, смогу и неудовлетворительному состоянию здоровья.

    Во время большого нефтяного кризиса в 1970-х годах, европейские автомобильные компании начали рекламировать дизельные двигатели для коммерческого использования в качестве альтернативы бензину. Однако, те, кто попробовал их, были разочарованы - двигатели были очень громкими, и, когда потребители дизеля осматривали свои машины, то могли обнаружить их покрытыми чёрной копотью - той же сажи, ответственной за смог в больших городах.

    За последние 30 до 40 лет, однако, огромные улучшения были сделаны в работе дизельного двигателя и чистоты дизельного топлива. Прямые впрыскивающие устройства в настоящее время контролируются передовыми компьютерами, которые контролируют сгорание топлива, повышение эффективности сокращения выбросов. Гораздо лучше рафинированные виды дизельного топлива, такие как дизтопливо с ультра низким содержанием серы в топливе (ULSD) снижает количество вредных выбросов. А модернизации двигателей, чтобы сделать их совместимыми с чистым топливом, становятся простой задачей. Другие технологии, такие как фильтры твёрдых частиц и каталитические нейтрализаторы, сжигают сажу и сокращают выбросы твёрдых частиц, оксида углерода и углеводородов на целых 90 процентов. Постоянно совершенствуя стандарты для экологически чистого топлива, Европейский Союз также будет толкать автоотрасль работать усерднее над снижением выбросов.


    Вы может также слышали такой термин как "биодизель ". Это то же самое, что дизельное топливо? Биодизель является альтернативой или добавкой к дизельному топливу, которая может использоваться в дизельных двигателях практически без модернизации самих двигателей. При этом, как видно из названия, биодизель изготавливается не из нефти, вместо этого он приходит к нам из растительных масел или животных жиров, которые были химически изменены. Интересный факт: сам Рудольф Дизель изначально рассматривал растительное масло в качестве топлива для своего изобретения.


    Биодизель может быть использован либо в сочетании с обычным дизельным топливом, либо полностью самостоятельно. Вы можете прочитать больше об альтернативных видах топлива

    Как известно, дизельные моторы дороже в обслуживании и тем более в ремонте, из-за того, что их узлы и детали (ТНВД или топливный насос высокого давления, насос форсунка, турбокомпрессор, форсунка) изготовлены с максимально высокой точностью. При этом они, как правило, экономичнее бензиновых и обладают более высоким КПД (коэффициентом полезного действия) — на 10-14 процентов. Кроме того современные дизеля имеют большую мощность и отличную приёмистость. А для еще большего увеличения мощностных и тяговых характеристик дизельные моторы оснащают турбонаддувом и интеркулером .

    Принцип работы дизельного двигателя и его отличие от бензинового собрата.

    Принципы работы дизельных и бензиновых движков, как уже отмечалось выше, абсолютно различны.

    В бензиновых двигателях внутреннего сгорания (карбюраторных, инжекторных) приготовление смеси, как правило, происходит во впускном тракте: в цилиндр подается уже готовая смесь, которая там загорается при помощи свечи зажигания в момент сжатия.

    В дизельных моторах все не так, и смесеобразование происходит прямо в цилиндре. Воспламенителем при этом является воздух, который при сжатии нагревается и воспламеняет дизельное топливо. Само это топливо подается в камеру сгорания форсункой и топливным насосом высокого давления (насосом-форсунки) под высоким давлением.

    Теперь познакомимся с этим процессом подробнее, по тактам. Кстати, количество последних у дизельных и бензиновых двигателей равно (четырем). Рассмотрим каждый из тактов.

    Первым тактом у дизельного мотора является такт впуска.

    В период прохождения первого такта поршень двигается с верхней мертвой точки (вмт) в нижнюю (нмт). На данном этапе впускной клапан открыт, в то время как выпускной, естественно, закрыт. Когда поршень двигается в нмт, создается разряжение и цилиндр мотора заполняется воздухом, который перед тем, как попасть цилиндр, очищается от механических примесей в воздушном фильтре.

    Вторым тактом будет такт сжатия.

    В этот момент времени клапаны (впускной и впускной) закрыты и поршень движется из нмт в вмт. И так как клапаны закрыты, воздуху деваться некуда, поэтому он сжимается, создавая высокое давление, и нагревается — до 800 градусов Цельсия.

    Третий такт — такт расширения (рабочий ход).

    Во время движения поршня в вмт дизельное топливо по средством форсунки подается в цилиндр под высоким давлением (от 150 до 300 Bar) и там распыляется. В процессе распыления топлива происходит его смешение с горячим воздухом и, следовательно, его последующее воспламенение. При горении смеси температура в цилиндре стремительно повышается — до 1750 -1800 градусов Цельсия. Одновременно с этим растет и давление, которое достигает 10-12 Мпа. Образуются газы, которые толкают поршень сверху вниз. Перемещаясь вниз, поршень выполняет предписанную ему работу. В нмт давление снижается вместе с температурой.

    Четвертый такт — завершающий, он же — такт выпуска.

    Поршень движется вверх. Выпускной клапан открывается и газы стремятся покинуть камеру сгорания через каналы в ГБЦ (головке блока цилиндров) в выпускной коллектор. Далее газы попадают в глушитель, где проходят очистку (в современных дизелях установлены сажевые фильтры) и в окружающую среду. В это время в цилиндре температура уменьшается, до 450-540 градусов, и давление падает — до 10-20 Bar.

    Видео.

    Вверх